# Exponentiation of natural numbers
```agda
module elementary-number-theory.exponentiation-natural-numbers where
```
<details><summary>Imports</summary>
```agda
open import commutative-algebra.powers-of-elements-commutative-semirings
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.commutative-semiring-of-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers
open import foundation.action-on-identifications-functions
open import foundation.identity-types
```
</details>
## Idea
The exponent `m^n` is the number obtained by multiplying `m` with itself `n`
times.
## Definition
```agda
exp-ℕ : ℕ → ℕ → ℕ
exp-ℕ m 0 = 1
exp-ℕ m (succ-ℕ n) = (exp-ℕ m n) *ℕ m
infixr 45 _^ℕ_
_^ℕ_ = exp-ℕ
```
```agda
power-ℕ : ℕ → ℕ → ℕ
power-ℕ = power-Commutative-Semiring ℕ-Commutative-Semiring
```
## Properties
### Tarski's high school arithmetic laws for exponentiation
```agda
annihilation-law-exp-ℕ : (n : ℕ) → 1 ^ℕ n = 1
annihilation-law-exp-ℕ zero-ℕ = refl
annihilation-law-exp-ℕ (succ-ℕ n) =
right-unit-law-mul-ℕ (1 ^ℕ n) ∙ annihilation-law-exp-ℕ n
left-distributive-exp-add-ℕ :
(x y z : ℕ) → x ^ℕ (y +ℕ z) = (x ^ℕ y) *ℕ (x ^ℕ z)
left-distributive-exp-add-ℕ x y zero-ℕ = inv (right-unit-law-mul-ℕ (x ^ℕ y))
left-distributive-exp-add-ℕ x y (succ-ℕ z) =
( ap (_*ℕ x) (left-distributive-exp-add-ℕ x y z)) ∙
( associative-mul-ℕ (x ^ℕ y) (x ^ℕ z) x)
right-distributive-exp-mul-ℕ :
(x y z : ℕ) → (x *ℕ y) ^ℕ z = (x ^ℕ z) *ℕ (y ^ℕ z)
right-distributive-exp-mul-ℕ x y zero-ℕ = refl
right-distributive-exp-mul-ℕ x y (succ-ℕ z) =
( ap (_*ℕ (x *ℕ y)) (right-distributive-exp-mul-ℕ x y z)) ∙
( interchange-law-mul-mul-ℕ (x ^ℕ z) (y ^ℕ z) x y)
exp-mul-ℕ : (x y z : ℕ) → x ^ℕ (y *ℕ z) = (x ^ℕ y) ^ℕ z
exp-mul-ℕ x zero-ℕ z = inv (annihilation-law-exp-ℕ z)
exp-mul-ℕ x (succ-ℕ y) z =
( left-distributive-exp-add-ℕ x (y *ℕ z) z) ∙
( ( ap (_*ℕ (x ^ℕ z)) (exp-mul-ℕ x y z)) ∙
( inv (right-distributive-exp-mul-ℕ (x ^ℕ y) x z)))
```
### The exponent `m^n` is always nonzero
```agda
is-nonzero-exp-ℕ :
(m n : ℕ) → is-nonzero-ℕ m → is-nonzero-ℕ (m ^ℕ n)
is-nonzero-exp-ℕ m zero-ℕ p = is-nonzero-one-ℕ
is-nonzero-exp-ℕ m (succ-ℕ n) p =
is-nonzero-mul-ℕ (m ^ℕ n) m (is-nonzero-exp-ℕ m n p) p
```