# Equality of dependent pair types
```agda
module foundation-core.equality-dependent-pair-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.dependent-identifications
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.transport-along-identifications
```
</details>
## Idea
An identification `(pair x y) = (pair x' y')` in a dependent pair type `Σ A B`
is equivalently described as a pair `pair α β` consisting of an identification
`α : x = x'` and an identification `β : (tr B α y) = y'`.
## Definition
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
Eq-Σ : (s t : Σ A B) → UU (l1 ⊔ l2)
Eq-Σ s t =
Σ (pr1 s = pr1 t) (λ α → dependent-identification B α (pr2 s) (pr2 t))
```
## Properties
### The type `Id s t` is equivalent to `Eq-Σ s t` for any `s t : Σ A B`
```agda
refl-Eq-Σ : (s : Σ A B) → Eq-Σ s s
pr1 (refl-Eq-Σ (pair a b)) = refl
pr2 (refl-Eq-Σ (pair a b)) = refl
pair-eq-Σ : {s t : Σ A B} → s = t → Eq-Σ s t
pair-eq-Σ {s} refl = refl-Eq-Σ s
eq-pair-eq-base :
{x y : A} {s : B x} (p : x = y) → (x , s) = (y , tr B p s)
eq-pair-eq-base refl = refl
eq-pair-eq-base' :
{x y : A} {t : B y} (p : x = y) → (x , tr B (inv p) t) = (y , t)
eq-pair-eq-base' refl = refl
eq-pair-eq-fiber :
{x : A} {s t : B x} → s = t → (x , s) = (x , t)
eq-pair-eq-fiber {x} = ap {B = Σ A B} (pair x)
eq-pair-Σ :
{s t : Σ A B}
(α : pr1 s = pr1 t) →
dependent-identification B α (pr2 s) (pr2 t) → s = t
eq-pair-Σ refl = eq-pair-eq-fiber
eq-pair-Σ' : {s t : Σ A B} → Eq-Σ s t → s = t
eq-pair-Σ' p = eq-pair-Σ (pr1 p) (pr2 p)
ap-pr1-eq-pair-eq-fiber :
{x : A} {s t : B x} (p : s = t) → ap pr1 (eq-pair-eq-fiber p) = refl
ap-pr1-eq-pair-eq-fiber refl = refl
is-retraction-pair-eq-Σ :
(s t : Σ A B) → pair-eq-Σ {s} {t} ∘ eq-pair-Σ' {s} {t} ~ id {A = Eq-Σ s t}
is-retraction-pair-eq-Σ (pair x y) (pair .x .y) (pair refl refl) = refl
is-section-pair-eq-Σ :
(s t : Σ A B) → ((eq-pair-Σ' {s} {t}) ∘ (pair-eq-Σ {s} {t})) ~ id
is-section-pair-eq-Σ (pair x y) .(pair x y) refl = refl
abstract
is-equiv-eq-pair-Σ : (s t : Σ A B) → is-equiv (eq-pair-Σ' {s} {t})
is-equiv-eq-pair-Σ s t =
is-equiv-is-invertible
( pair-eq-Σ)
( is-section-pair-eq-Σ s t)
( is-retraction-pair-eq-Σ s t)
equiv-eq-pair-Σ : (s t : Σ A B) → Eq-Σ s t ≃ (s = t)
pr1 (equiv-eq-pair-Σ s t) = eq-pair-Σ'
pr2 (equiv-eq-pair-Σ s t) = is-equiv-eq-pair-Σ s t
abstract
is-equiv-pair-eq-Σ : (s t : Σ A B) → is-equiv (pair-eq-Σ {s} {t})
is-equiv-pair-eq-Σ s t =
is-equiv-is-invertible
( eq-pair-Σ')
( is-retraction-pair-eq-Σ s t)
( is-section-pair-eq-Σ s t)
equiv-pair-eq-Σ : (s t : Σ A B) → (s = t) ≃ Eq-Σ s t
pr1 (equiv-pair-eq-Σ s t) = pair-eq-Σ
pr2 (equiv-pair-eq-Σ s t) = is-equiv-pair-eq-Σ s t
η-pair : (t : Σ A B) → (pair (pr1 t) (pr2 t)) = t
η-pair t = refl
eq-base-eq-pair-Σ : {s t : Σ A B} → (s = t) → (pr1 s = pr1 t)
eq-base-eq-pair-Σ p = pr1 (pair-eq-Σ p)
dependent-eq-family-eq-pair-Σ :
{s t : Σ A B} → (p : s = t) →
dependent-identification B (eq-base-eq-pair-Σ p) (pr2 s) (pr2 t)
dependent-eq-family-eq-pair-Σ p = pr2 (pair-eq-Σ p)
```
### Lifting equality to the total space
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
lift-eq-Σ :
{x y : A} (p : x = y) (b : B x) → (pair x b) = (pair y (tr B p b))
lift-eq-Σ refl b = refl
```
### Transport in a family of dependent pair types
```agda
tr-Σ :
{l1 l2 l3 : Level} {A : UU l1} {a0 a1 : A} {B : A → UU l2}
(C : (x : A) → B x → UU l3) (p : a0 = a1) (z : Σ (B a0) (λ x → C a0 x)) →
tr (λ a → (Σ (B a) (C a))) p z =
pair (tr B p (pr1 z)) (tr (ind-Σ C) (eq-pair-Σ p refl) (pr2 z))
tr-Σ C refl z = refl
```
### Transport in a family over a dependent pair type
```agda
tr-eq-pair-Σ :
{l1 l2 l3 : Level} {A : UU l1} {a0 a1 : A}
{B : A → UU l2} {b0 : B a0} {b1 : B a1} (C : (Σ A B) → UU l3)
(p : a0 = a1) (q : dependent-identification B p b0 b1) (u : C (a0 , b0)) →
tr C (eq-pair-Σ p q) u =
tr (λ x → C (a1 , x)) q (tr C (eq-pair-Σ p refl) u)
tr-eq-pair-Σ C refl refl u = refl
```
## See also
- Equality proofs in cartesian product types are characterized in
[`foundation.equality-cartesian-product-types`](foundation.equality-cartesian-product-types.md).
- Equality proofs in dependent function types are characterized in
[`foundation.equality-dependent-function-types`](foundation.equality-dependent-function-types.md).
- Equality proofs in the fiber of a map are characterized in
[`foundation.equality-fibers-of-maps`](foundation.equality-fibers-of-maps.md).