# Fibers of maps
```agda
module foundation-core.fibers-of-maps where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.retractions
open import foundation-core.sections
open import foundation-core.transport-along-identifications
```
</details>
## Idea
Given a map `f : A → B` and an element `b : B`, the **fiber** of `f` at `b` is
the preimage of `f` at `b`. In other words, it consists of the elements `a : A`
equipped with an [identification](foundation-core.identity-types.md) `f a = b`.
## Definition
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B)
where
fiber : UU (l1 ⊔ l2)
fiber = Σ A (λ x → f x = b)
fiber' : UU (l1 ⊔ l2)
fiber' = Σ A (λ x → b = f x)
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) {b : B}
where
inclusion-fiber : fiber f b → A
inclusion-fiber = pr1
compute-value-inclusion-fiber : (y : fiber f b) → f (inclusion-fiber y) = b
compute-value-inclusion-fiber = pr2
```
## Properties
### Characterization of the identity types of the fibers of a map
#### The case of `fiber`
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B)
where
Eq-fiber : fiber f b → fiber f b → UU (l1 ⊔ l2)
Eq-fiber s t = Σ (pr1 s = pr1 t) (λ α → ap f α ∙ pr2 t = pr2 s)
refl-Eq-fiber : (s : fiber f b) → Eq-fiber s s
pr1 (refl-Eq-fiber s) = refl
pr2 (refl-Eq-fiber s) = refl
Eq-eq-fiber : {s t : fiber f b} → s = t → Eq-fiber s t
Eq-eq-fiber {s} refl = refl-Eq-fiber s
eq-Eq-fiber-uncurry : {s t : fiber f b} → Eq-fiber s t → s = t
eq-Eq-fiber-uncurry (refl , refl) = refl
eq-Eq-fiber :
{s t : fiber f b} (α : pr1 s = pr1 t) → ap f α ∙ pr2 t = pr2 s → s = t
eq-Eq-fiber α β = eq-Eq-fiber-uncurry (α , β)
is-section-eq-Eq-fiber :
{s t : fiber f b} →
is-section (Eq-eq-fiber {s} {t}) (eq-Eq-fiber-uncurry {s} {t})
is-section-eq-Eq-fiber (refl , refl) = refl
is-retraction-eq-Eq-fiber :
{s t : fiber f b} →
is-retraction (Eq-eq-fiber {s} {t}) (eq-Eq-fiber-uncurry {s} {t})
is-retraction-eq-Eq-fiber refl = refl
abstract
is-equiv-Eq-eq-fiber : {s t : fiber f b} → is-equiv (Eq-eq-fiber {s} {t})
is-equiv-Eq-eq-fiber =
is-equiv-is-invertible
eq-Eq-fiber-uncurry
is-section-eq-Eq-fiber
is-retraction-eq-Eq-fiber
equiv-Eq-eq-fiber : {s t : fiber f b} → (s = t) ≃ Eq-fiber s t
pr1 equiv-Eq-eq-fiber = Eq-eq-fiber
pr2 equiv-Eq-eq-fiber = is-equiv-Eq-eq-fiber
abstract
is-equiv-eq-Eq-fiber :
{s t : fiber f b} → is-equiv (eq-Eq-fiber-uncurry {s} {t})
is-equiv-eq-Eq-fiber =
is-equiv-is-invertible
Eq-eq-fiber
is-retraction-eq-Eq-fiber
is-section-eq-Eq-fiber
equiv-eq-Eq-fiber : {s t : fiber f b} → Eq-fiber s t ≃ (s = t)
pr1 equiv-eq-Eq-fiber = eq-Eq-fiber-uncurry
pr2 equiv-eq-Eq-fiber = is-equiv-eq-Eq-fiber
compute-ap-inclusion-fiber-eq-Eq-fiber :
{s t : fiber f b} (α : pr1 s = pr1 t) (β : ap f α ∙ pr2 t = pr2 s) →
ap (inclusion-fiber f) (eq-Eq-fiber α β) = α
compute-ap-inclusion-fiber-eq-Eq-fiber refl refl = refl
```
#### The case of `fiber'`
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B)
where
Eq-fiber' : fiber' f b → fiber' f b → UU (l1 ⊔ l2)
Eq-fiber' s t = Σ (pr1 s = pr1 t) (λ α → pr2 t = pr2 s ∙ ap f α)
refl-Eq-fiber' : (s : fiber' f b) → Eq-fiber' s s
pr1 (refl-Eq-fiber' s) = refl
pr2 (refl-Eq-fiber' s) = inv right-unit
Eq-eq-fiber' : {s t : fiber' f b} → s = t → Eq-fiber' s t
Eq-eq-fiber' {s} refl = refl-Eq-fiber' s
eq-Eq-fiber-uncurry' : {s t : fiber' f b} → Eq-fiber' s t → s = t
eq-Eq-fiber-uncurry' {x , p} (refl , refl) =
ap (pair _) (inv right-unit)
eq-Eq-fiber' :
{s t : fiber' f b} (α : pr1 s = pr1 t) → pr2 t = pr2 s ∙ ap f α → s = t
eq-Eq-fiber' α β = eq-Eq-fiber-uncurry' (α , β)
is-section-eq-Eq-fiber' :
{s t : fiber' f b} →
is-section (Eq-eq-fiber' {s} {t}) (eq-Eq-fiber-uncurry' {s} {t})
is-section-eq-Eq-fiber' {x , refl} (refl , refl) = refl
is-retraction-eq-Eq-fiber' :
{s t : fiber' f b} →
is-retraction (Eq-eq-fiber' {s} {t}) (eq-Eq-fiber-uncurry' {s} {t})
is-retraction-eq-Eq-fiber' {x , refl} refl = refl
abstract
is-equiv-Eq-eq-fiber' :
{s t : fiber' f b} → is-equiv (Eq-eq-fiber' {s} {t})
is-equiv-Eq-eq-fiber' =
is-equiv-is-invertible
eq-Eq-fiber-uncurry'
is-section-eq-Eq-fiber'
is-retraction-eq-Eq-fiber'
equiv-Eq-eq-fiber' : {s t : fiber' f b} → (s = t) ≃ Eq-fiber' s t
pr1 equiv-Eq-eq-fiber' = Eq-eq-fiber'
pr2 equiv-Eq-eq-fiber' = is-equiv-Eq-eq-fiber'
abstract
is-equiv-eq-Eq-fiber' :
{s t : fiber' f b} → is-equiv (eq-Eq-fiber-uncurry' {s} {t})
is-equiv-eq-Eq-fiber' =
is-equiv-is-invertible
Eq-eq-fiber'
is-retraction-eq-Eq-fiber'
is-section-eq-Eq-fiber'
equiv-eq-Eq-fiber' : {s t : fiber' f b} → Eq-fiber' s t ≃ (s = t)
pr1 equiv-eq-Eq-fiber' = eq-Eq-fiber-uncurry'
pr2 equiv-eq-Eq-fiber' = is-equiv-eq-Eq-fiber'
```
### `fiber f y` and `fiber' f y` are equivalent
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (y : B)
where
map-equiv-fiber : fiber f y → fiber' f y
pr1 (map-equiv-fiber (x , _)) = x
pr2 (map-equiv-fiber (x , p)) = inv p
map-inv-equiv-fiber : fiber' f y → fiber f y
pr1 (map-inv-equiv-fiber (x , _)) = x
pr2 (map-inv-equiv-fiber (x , p)) = inv p
is-section-map-inv-equiv-fiber :
is-section map-equiv-fiber map-inv-equiv-fiber
is-section-map-inv-equiv-fiber (x , refl) = refl
is-retraction-map-inv-equiv-fiber :
is-retraction map-equiv-fiber map-inv-equiv-fiber
is-retraction-map-inv-equiv-fiber (x , refl) = refl
is-equiv-map-equiv-fiber : is-equiv map-equiv-fiber
is-equiv-map-equiv-fiber =
is-equiv-is-invertible
map-inv-equiv-fiber
is-section-map-inv-equiv-fiber
is-retraction-map-inv-equiv-fiber
equiv-fiber : fiber f y ≃ fiber' f y
pr1 equiv-fiber = map-equiv-fiber
pr2 equiv-fiber = is-equiv-map-equiv-fiber
```
### Computing the fibers of a projection map
```agda
module _
{l1 l2 : Level} {A : UU l1} (B : A → UU l2) (a : A)
where
map-fiber-pr1 : fiber (pr1 {B = B}) a → B a
map-fiber-pr1 ((x , y) , p) = tr B p y
map-inv-fiber-pr1 : B a → fiber (pr1 {B = B}) a
pr1 (pr1 (map-inv-fiber-pr1 b)) = a
pr2 (pr1 (map-inv-fiber-pr1 b)) = b
pr2 (map-inv-fiber-pr1 b) = refl
is-section-map-inv-fiber-pr1 :
is-section map-fiber-pr1 map-inv-fiber-pr1
is-section-map-inv-fiber-pr1 b = refl
is-retraction-map-inv-fiber-pr1 :
is-retraction map-fiber-pr1 map-inv-fiber-pr1
is-retraction-map-inv-fiber-pr1 ((.a , y) , refl) = refl
abstract
is-equiv-map-fiber-pr1 : is-equiv map-fiber-pr1
is-equiv-map-fiber-pr1 =
is-equiv-is-invertible
map-inv-fiber-pr1
is-section-map-inv-fiber-pr1
is-retraction-map-inv-fiber-pr1
equiv-fiber-pr1 : fiber (pr1 {B = B}) a ≃ B a
pr1 equiv-fiber-pr1 = map-fiber-pr1
pr2 equiv-fiber-pr1 = is-equiv-map-fiber-pr1
abstract
is-equiv-map-inv-fiber-pr1 : is-equiv map-inv-fiber-pr1
is-equiv-map-inv-fiber-pr1 =
is-equiv-is-invertible
map-fiber-pr1
is-retraction-map-inv-fiber-pr1
is-section-map-inv-fiber-pr1
inv-equiv-fiber-pr1 : B a ≃ fiber (pr1 {B = B}) a
pr1 inv-equiv-fiber-pr1 = map-inv-fiber-pr1
pr2 inv-equiv-fiber-pr1 = is-equiv-map-inv-fiber-pr1
```
### The total space of fibers
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where
map-equiv-total-fiber : Σ B (fiber f) → A
map-equiv-total-fiber t = pr1 (pr2 t)
triangle-map-equiv-total-fiber : pr1 ~ f ∘ map-equiv-total-fiber
triangle-map-equiv-total-fiber t = inv (pr2 (pr2 t))
map-inv-equiv-total-fiber : A → Σ B (fiber f)
pr1 (map-inv-equiv-total-fiber x) = f x
pr1 (pr2 (map-inv-equiv-total-fiber x)) = x
pr2 (pr2 (map-inv-equiv-total-fiber x)) = refl
is-retraction-map-inv-equiv-total-fiber :
is-retraction map-equiv-total-fiber map-inv-equiv-total-fiber
is-retraction-map-inv-equiv-total-fiber (.(f x) , x , refl) = refl
is-section-map-inv-equiv-total-fiber :
is-section map-equiv-total-fiber map-inv-equiv-total-fiber
is-section-map-inv-equiv-total-fiber x = refl
abstract
is-equiv-map-equiv-total-fiber : is-equiv map-equiv-total-fiber
is-equiv-map-equiv-total-fiber =
is-equiv-is-invertible
map-inv-equiv-total-fiber
is-section-map-inv-equiv-total-fiber
is-retraction-map-inv-equiv-total-fiber
is-equiv-map-inv-equiv-total-fiber : is-equiv map-inv-equiv-total-fiber
is-equiv-map-inv-equiv-total-fiber =
is-equiv-is-invertible
map-equiv-total-fiber
is-retraction-map-inv-equiv-total-fiber
is-section-map-inv-equiv-total-fiber
equiv-total-fiber : Σ B (fiber f) ≃ A
pr1 equiv-total-fiber = map-equiv-total-fiber
pr2 equiv-total-fiber = is-equiv-map-equiv-total-fiber
inv-equiv-total-fiber : A ≃ Σ B (fiber f)
pr1 inv-equiv-total-fiber = map-inv-equiv-total-fiber
pr2 inv-equiv-total-fiber = is-equiv-map-inv-equiv-total-fiber
```
### Fibers of compositions
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(g : B → X) (h : A → B) (x : X)
where
map-compute-fiber-comp :
fiber (g ∘ h) x → Σ (fiber g x) (λ t → fiber h (pr1 t))
pr1 (pr1 (map-compute-fiber-comp (a , p))) = h a
pr2 (pr1 (map-compute-fiber-comp (a , p))) = p
pr1 (pr2 (map-compute-fiber-comp (a , p))) = a
pr2 (pr2 (map-compute-fiber-comp (a , p))) = refl
map-inv-compute-fiber-comp :
Σ (fiber g x) (λ t → fiber h (pr1 t)) → fiber (g ∘ h) x
pr1 (map-inv-compute-fiber-comp t) = pr1 (pr2 t)
pr2 (map-inv-compute-fiber-comp t) = ap g (pr2 (pr2 t)) ∙ pr2 (pr1 t)
is-section-map-inv-compute-fiber-comp :
is-section map-compute-fiber-comp map-inv-compute-fiber-comp
is-section-map-inv-compute-fiber-comp ((.(h a) , refl) , (a , refl)) = refl
is-retraction-map-inv-compute-fiber-comp :
is-retraction map-compute-fiber-comp map-inv-compute-fiber-comp
is-retraction-map-inv-compute-fiber-comp (a , refl) = refl
abstract
is-equiv-map-compute-fiber-comp :
is-equiv map-compute-fiber-comp
is-equiv-map-compute-fiber-comp =
is-equiv-is-invertible
( map-inv-compute-fiber-comp)
( is-section-map-inv-compute-fiber-comp)
( is-retraction-map-inv-compute-fiber-comp)
compute-fiber-comp :
fiber (g ∘ h) x ≃ Σ (fiber g x) (λ t → fiber h (pr1 t))
pr1 compute-fiber-comp = map-compute-fiber-comp
pr2 compute-fiber-comp = is-equiv-map-compute-fiber-comp
abstract
is-equiv-map-inv-compute-fiber-comp :
is-equiv map-inv-compute-fiber-comp
is-equiv-map-inv-compute-fiber-comp =
is-equiv-is-invertible
( map-compute-fiber-comp)
( is-retraction-map-inv-compute-fiber-comp)
( is-section-map-inv-compute-fiber-comp)
inv-compute-fiber-comp :
Σ (fiber g x) (λ t → fiber h (pr1 t)) ≃ fiber (g ∘ h) x
pr1 inv-compute-fiber-comp = map-inv-compute-fiber-comp
pr2 inv-compute-fiber-comp = is-equiv-map-inv-compute-fiber-comp
```
## Table of files about fibers of maps
The following table lists files that are about fibers of maps as a general
concept.
{{#include tables/fibers-of-maps.md}}