# Truncated maps
```agda
module foundation-core.truncated-maps where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.equality-fibers-of-maps
open import foundation.universe-levels
open import foundation-core.commuting-squares-of-maps
open import foundation-core.contractible-maps
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.truncated-types
open import foundation-core.truncation-levels
```
</details>
## Idea
A map is `k`-truncated if its fibers are `k`-truncated.
## Definition
```agda
module _
{l1 l2 : Level} (k : 𝕋)
where
is-trunc-map : {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2)
is-trunc-map f = (y : _) → is-trunc k (fiber f y)
trunc-map : (A : UU l1) (B : UU l2) → UU (l1 ⊔ l2)
trunc-map A B = Σ (A → B) is-trunc-map
module _
{l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2}
where
map-trunc-map : trunc-map k A B → A → B
map-trunc-map = pr1
abstract
is-trunc-map-map-trunc-map :
(f : trunc-map k A B) → is-trunc-map k (map-trunc-map f)
is-trunc-map-map-trunc-map = pr2
```
## Properties
### If a map is `k`-truncated, then it is `k+1`-truncated
```agda
abstract
is-trunc-map-succ-is-trunc-map :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2}
{f : A → B} → is-trunc-map k f → is-trunc-map (succ-𝕋 k) f
is-trunc-map-succ-is-trunc-map k is-trunc-f b =
is-trunc-succ-is-trunc k (is-trunc-f b)
```
### Any contractible map is `k`-truncated
```agda
is-trunc-map-is-contr-map :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {f : A → B} →
is-contr-map f → is-trunc-map k f
is-trunc-map-is-contr-map neg-two-𝕋 H = H
is-trunc-map-is-contr-map (succ-𝕋 k) H =
is-trunc-map-succ-is-trunc-map k (is-trunc-map-is-contr-map k H)
```
### Any equivalence is `k`-truncated
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2}
where
is-trunc-map-is-equiv :
{f : A → B} → is-equiv f → is-trunc-map k f
is-trunc-map-is-equiv H =
is-trunc-map-is-contr-map k (is-contr-map-is-equiv H)
is-trunc-map-equiv :
(e : A ≃ B) → is-trunc-map k (map-equiv e)
is-trunc-map-equiv e = is-trunc-map-is-equiv (is-equiv-map-equiv e)
```
### A map is `k+1`-truncated if and only if its action on identifications is `k`-truncated
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B)
where
abstract
is-trunc-map-is-trunc-map-ap :
((x y : A) → is-trunc-map k (ap f {x} {y})) → is-trunc-map (succ-𝕋 k) f
is-trunc-map-is-trunc-map-ap is-trunc-map-ap-f b (pair x p) (pair x' p') =
is-trunc-equiv k
( fiber (ap f) (p ∙ (inv p')))
( equiv-fiber-ap-eq-fiber f (pair x p) (pair x' p'))
( is-trunc-map-ap-f x x' (p ∙ (inv p')))
abstract
is-trunc-map-ap-is-trunc-map :
is-trunc-map (succ-𝕋 k) f → (x y : A) → is-trunc-map k (ap f {x} {y})
is-trunc-map-ap-is-trunc-map is-trunc-map-f x y p =
is-trunc-is-equiv' k
( pair x p = pair y refl)
( eq-fiber-fiber-ap f x y p)
( is-equiv-eq-fiber-fiber-ap f x y p)
( is-trunc-map-f (f y) (pair x p) (pair y refl))
```
### The domain of any `k`-truncated map into a `k+1`-truncated type is `k+1`-truncated
```agda
is-trunc-is-trunc-map-into-is-trunc :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) →
is-trunc (succ-𝕋 k) B → is-trunc-map k f →
is-trunc (succ-𝕋 k) A
is-trunc-is-trunc-map-into-is-trunc neg-two-𝕋 f is-trunc-B is-trunc-map-f =
is-trunc-is-equiv _ _ f (is-equiv-is-contr-map is-trunc-map-f) is-trunc-B
is-trunc-is-trunc-map-into-is-trunc
(succ-𝕋 k) f is-trunc-B is-trunc-map-f a a' =
is-trunc-is-trunc-map-into-is-trunc
( k)
( ap f)
( is-trunc-B (f a) (f a'))
( is-trunc-map-ap-is-trunc-map k f is-trunc-map-f a a')
```
### A family of types is a family of `k`-truncated types if and only of the projection map is `k`-truncated
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1}
where
abstract
is-trunc-map-pr1 :
{B : A → UU l2} → ((x : A) → is-trunc k (B x)) →
is-trunc-map k (pr1 {l1} {l2} {A} {B})
is-trunc-map-pr1 {B} H x =
is-trunc-equiv k (B x) (equiv-fiber-pr1 B x) (H x)
pr1-trunc-map :
(B : A → Truncated-Type l2 k) → trunc-map k (Σ A (λ x → pr1 (B x))) A
pr1 (pr1-trunc-map B) = pr1
pr2 (pr1-trunc-map B) = is-trunc-map-pr1 (λ x → pr2 (B x))
abstract
is-trunc-is-trunc-map-pr1 :
(B : A → UU l2) → is-trunc-map k (pr1 {l1} {l2} {A} {B}) →
(x : A) → is-trunc k (B x)
is-trunc-is-trunc-map-pr1 B is-trunc-map-pr1 x =
is-trunc-equiv k
( fiber pr1 x)
( inv-equiv-fiber-pr1 B x)
( is-trunc-map-pr1 x)
```
### Any map between `k`-truncated types is `k`-truncated
```agda
abstract
is-trunc-map-is-trunc-domain-codomain :
{l1 l2 : Level} (k : 𝕋) {A : UU l1}
{B : UU l2} {f : A → B} → is-trunc k A → is-trunc k B → is-trunc-map k f
is-trunc-map-is-trunc-domain-codomain k {f = f} is-trunc-A is-trunc-B b =
is-trunc-Σ is-trunc-A (λ x → is-trunc-Id is-trunc-B (f x) b)
```
### A type family over a `k`-truncated type A is a family of `k`-truncated types if its total space is `k`-truncated
```agda
abstract
is-trunc-fam-is-trunc-Σ :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} →
is-trunc k A → is-trunc k (Σ A B) → (x : A) → is-trunc k (B x)
is-trunc-fam-is-trunc-Σ k {B = B} is-trunc-A is-trunc-ΣAB x =
is-trunc-equiv' k
( fiber pr1 x)
( equiv-fiber-pr1 B x)
( is-trunc-map-is-trunc-domain-codomain k is-trunc-ΣAB is-trunc-A x)
```
### Truncated maps are closed under homotopies
```agda
abstract
is-trunc-map-htpy :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2}
{f g : A → B} → f ~ g → is-trunc-map k g → is-trunc-map k f
is-trunc-map-htpy k {A} {B} {f} {g} H is-trunc-g b =
is-trunc-is-equiv k
( Σ A (λ z → g z = b))
( fiber-triangle f g id H b)
( is-fiberwise-equiv-is-equiv-triangle f g id H is-equiv-id b)
( is-trunc-g b)
```
### Truncated maps are closed under composition
```agda
abstract
is-trunc-map-comp :
{l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2}
{X : UU l3} (g : B → X) (h : A → B) →
is-trunc-map k g → is-trunc-map k h → is-trunc-map k (g ∘ h)
is-trunc-map-comp k g h is-trunc-g is-trunc-h x =
is-trunc-is-equiv k
( Σ (fiber g x) (λ t → fiber h (pr1 t)))
( map-compute-fiber-comp g h x)
( is-equiv-map-compute-fiber-comp g h x)
( is-trunc-Σ
( is-trunc-g x)
( λ t → is-trunc-h (pr1 t)))
comp-trunc-map :
{l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2}
{X : UU l3} (g : trunc-map k B X) (h : trunc-map k A B) →
trunc-map k A X
pr1 (comp-trunc-map k g h) = pr1 g ∘ pr1 h
pr2 (comp-trunc-map k g h) =
is-trunc-map-comp k (pr1 g) (pr1 h) (pr2 g) (pr2 h)
```
### In a commuting triangle `f ~ g ∘ h`, if `g` and `h` are truncated maps, then `f` is a truncated map
```agda
abstract
is-trunc-map-left-map-triangle :
{l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2}
{X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) →
is-trunc-map k g → is-trunc-map k h → is-trunc-map k f
is-trunc-map-left-map-triangle k f g h H is-trunc-g is-trunc-h =
is-trunc-map-htpy k H
( is-trunc-map-comp k g h is-trunc-g is-trunc-h)
```
### In a commuting triangle `f ~ g ∘ h`, if `f` and `g` are truncated maps, then `h` is a truncated map
```agda
abstract
is-trunc-map-top-map-triangle :
{l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) →
is-trunc-map k g → is-trunc-map k f → is-trunc-map k h
is-trunc-map-top-map-triangle k {A} f g h H is-trunc-g is-trunc-f b =
is-trunc-fam-is-trunc-Σ k
( is-trunc-g (g b))
( is-trunc-is-equiv' k
( Σ A (λ z → g (h z) = g b))
( map-compute-fiber-comp g h (g b))
( is-equiv-map-compute-fiber-comp g h (g b))
( is-trunc-map-htpy k (inv-htpy H) is-trunc-f (g b)))
( pair b refl)
```
### If a composite `g ∘ h` and its left factor `g` are truncated maps, then its right factor `h` is a truncated map
```agda
is-trunc-map-right-factor :
{l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3}
(g : B → X) (h : A → B) →
is-trunc-map k g → is-trunc-map k (g ∘ h) → is-trunc-map k h
is-trunc-map-right-factor k {A} g h =
is-trunc-map-top-map-triangle k (g ∘ h) g h refl-htpy
```
### In a commuting square with the left and right maps equivalences, the top map is truncated if and only if the bottom map is truncated
```agda
module _
{l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
(f : A → B) (g : A → C) (h : B → D) (i : C → D)
(H : coherence-square-maps f g h i)
where
is-trunc-map-top-is-trunc-map-bottom-is-equiv :
is-equiv g → is-equiv h → is-trunc-map k i → is-trunc-map k f
is-trunc-map-top-is-trunc-map-bottom-is-equiv K L M =
is-trunc-map-top-map-triangle k (i ∘ g) h f H
( is-trunc-map-is-equiv k L)
( is-trunc-map-comp k i g M
( is-trunc-map-is-equiv k K))
```