# Binary equivalences on unordered pairs of types
```agda
module foundation.binary-equivalences-unordered-pairs-of-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.binary-operations-unordered-pairs-of-types
open import foundation.products-unordered-pairs-of-types
open import foundation.universe-levels
open import foundation.unordered-pairs
open import foundation-core.equivalences
open import foundation-core.function-types
```
</details>
## Idea
A binary operation `f : ((i : I) → A i) → B` is a binary equivalence if for each
`i : I` and each `x : A i` the map `f ∘ pair x : A (swap i) → B` is an
equivalence.
## Definition
```agda
is-binary-equiv-unordered-pair-types :
{l1 l2 : Level} (A : unordered-pair (UU l1)) {B : UU l2}
(f : binary-operation-unordered-pair-types A B) → UU (l1 ⊔ l2)
is-binary-equiv-unordered-pair-types A f =
(i : type-unordered-pair A) (x : element-unordered-pair A i) →
is-equiv (f ∘ pair-product-unordered-pair-types A i x)
```