# Decidability of dependent pair types
```agda
module foundation.decidable-dependent-pair-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.maybe
open import foundation.type-arithmetic-coproduct-types
open import foundation.type-arithmetic-unit-type
open import foundation.universe-levels
open import foundation-core.coproduct-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
```
</details>
## Idea
We describe conditions under which dependent sums are decidable.
```agda
is-decidable-Σ-coproduct :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A + B → UU l3) →
is-decidable (Σ A (C ∘ inl)) → is-decidable (Σ B (C ∘ inr)) →
is-decidable (Σ (A + B) C)
is-decidable-Σ-coproduct {l1} {l2} {l3} {A} {B} C dA dB =
is-decidable-equiv
( right-distributive-Σ-coproduct A B C)
( is-decidable-coproduct dA dB)
is-decidable-Σ-Maybe :
{l1 l2 : Level} {A : UU l1} {B : Maybe A → UU l2} →
is-decidable (Σ A (B ∘ unit-Maybe)) → is-decidable (B exception-Maybe) →
is-decidable (Σ (Maybe A) B)
is-decidable-Σ-Maybe {l1} {l2} {A} {B} dA de =
is-decidable-Σ-coproduct B dA
( is-decidable-equiv
( left-unit-law-Σ (B ∘ inr))
( de))
is-decidable-Σ-equiv :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} {D : B → UU l4}
(e : A ≃ B) (f : (x : A) → C x ≃ D (map-equiv e x)) →
is-decidable (Σ A C) → is-decidable (Σ B D)
is-decidable-Σ-equiv {D = D} e f =
is-decidable-equiv' (equiv-Σ D e f)
is-decidable-Σ-equiv' :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} {D : B → UU l4}
(e : A ≃ B) (f : (x : A) → C x ≃ D (map-equiv e x)) →
is-decidable (Σ B D) → is-decidable (Σ A C)
is-decidable-Σ-equiv' {D = D} e f =
is-decidable-equiv (equiv-Σ D e f)
```