# Decidable types
```agda
module foundation.decidable-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.double-negation
open import foundation.empty-types
open import foundation.hilberts-epsilon-operators
open import foundation.negation
open import foundation.propositional-truncations
open import foundation.raising-universe-levels
open import foundation.type-arithmetic-empty-type
open import foundation.unit-type
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.propositions
open import foundation-core.retracts-of-types
```
</details>
## Idea
A type is said to be **decidable** if we can either construct an element, or we
can prove that it is [empty](foundation-core.empty-types.md). In other words, we
interpret decidability via the
[Curry-Howard interpretation](https://en.wikipedia.org/wiki/Curry–Howard_correspondence)
of logic into type theory. A related concept is that a type is either
[inhabited](foundation.inhabited-types.md) or empty, where inhabitedness of a
type is expressed using the
[propositional truncation](foundation.propositional-truncations.md).
## Definition
### The Curry–Howard interpretation of decidability
```agda
is-decidable : {l : Level} (A : UU l) → UU l
is-decidable A = A + (¬ A)
is-decidable-fam :
{l1 l2 : Level} {A : UU l1} (P : A → UU l2) → UU (l1 ⊔ l2)
is-decidable-fam {A = A} P = (x : A) → is-decidable (P x)
```
### The predicate that a type is inhabited or empty
```agda
is-inhabited-or-empty : {l1 : Level} → UU l1 → UU l1
is-inhabited-or-empty A = type-trunc-Prop A + is-empty A
```
### Merely decidable types
A type `A` is said to be
{{#concept "merely decidable" Agda=is-merely-decidable}} if it comes equipped
with an element of `║ is-decidable A ║₋₁`, or equivalently, the
[disjunction](foundation.disjunction.md) `A ∨ ¬ A` holds.
```agda
is-merely-decidable-Prop :
{l : Level} → UU l → Prop l
is-merely-decidable-Prop A = trunc-Prop (is-decidable A)
is-merely-decidable : {l : Level} → UU l → UU l
is-merely-decidable A = type-trunc-Prop (is-decidable A)
```
## Examples
### The unit type and the empty type are decidable
```agda
is-decidable-unit : is-decidable unit
is-decidable-unit = inl star
is-decidable-empty : is-decidable empty
is-decidable-empty = inr id
```
## Properties
### Coproducts of decidable types are decidable
```agda
is-decidable-coproduct :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-decidable A → is-decidable B → is-decidable (A + B)
is-decidable-coproduct (inl a) y = inl (inl a)
is-decidable-coproduct (inr na) (inl b) = inl (inr b)
is-decidable-coproduct (inr na) (inr nb) = inr (rec-coproduct na nb)
```
### Cartesian products of decidable types are decidable
```agda
is-decidable-product :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-decidable A → is-decidable B → is-decidable (A × B)
is-decidable-product (inl a) (inl b) = inl (pair a b)
is-decidable-product (inl a) (inr g) = inr (g ∘ pr2)
is-decidable-product (inr f) (inl b) = inr (f ∘ pr1)
is-decidable-product (inr f) (inr g) = inr (f ∘ pr1)
is-decidable-product' :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-decidable A → (A → is-decidable B) → is-decidable (A × B)
is-decidable-product' (inl a) d with d a
... | inl b = inl (pair a b)
... | inr nb = inr (nb ∘ pr2)
is-decidable-product' (inr na) d = inr (na ∘ pr1)
is-decidable-left-factor :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-decidable (A × B) → B → is-decidable A
is-decidable-left-factor (inl (pair x y)) b = inl x
is-decidable-left-factor (inr f) b = inr (λ a → f (pair a b))
is-decidable-right-factor :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-decidable (A × B) → A → is-decidable B
is-decidable-right-factor (inl (pair x y)) a = inl y
is-decidable-right-factor (inr f) a = inr (λ b → f (pair a b))
```
### Function types of decidable types are decidable
```agda
is-decidable-function-type :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-decidable A → is-decidable B → is-decidable (A → B)
is-decidable-function-type (inl a) (inl b) = inl (λ x → b)
is-decidable-function-type (inl a) (inr g) = inr (λ h → g (h a))
is-decidable-function-type (inr f) (inl b) = inl (ex-falso ∘ f)
is-decidable-function-type (inr f) (inr g) = inl (ex-falso ∘ f)
is-decidable-function-type' :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-decidable A → (A → is-decidable B) → is-decidable (A → B)
is-decidable-function-type' (inl a) d with d a
... | inl b = inl (λ x → b)
... | inr nb = inr (λ f → nb (f a))
is-decidable-function-type' (inr na) d = inl (ex-falso ∘ na)
```
### The negation of a decidable type is decidable
```agda
is-decidable-neg :
{l : Level} {A : UU l} → is-decidable A → is-decidable (¬ A)
is-decidable-neg d = is-decidable-function-type d is-decidable-empty
```
### Decidable types are closed under coinhabited types; retracts, and equivalences
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-decidable-iff :
(A → B) → (B → A) → is-decidable A → is-decidable B
is-decidable-iff f g (inl a) = inl (f a)
is-decidable-iff f g (inr na) = inr (λ b → na (g b))
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-decidable-retract-of :
A retract-of B → is-decidable B → is-decidable A
is-decidable-retract-of (pair i (pair r H)) (inl b) = inl (r b)
is-decidable-retract-of (pair i (pair r H)) (inr f) = inr (f ∘ i)
is-decidable-is-equiv :
{f : A → B} → is-equiv f → is-decidable B → is-decidable A
is-decidable-is-equiv {f} (pair (pair g G) (pair h H)) =
is-decidable-retract-of (pair f (pair h H))
is-decidable-equiv :
(e : A ≃ B) → is-decidable B → is-decidable A
is-decidable-equiv e = is-decidable-iff (map-inv-equiv e) (map-equiv e)
is-decidable-equiv' :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) →
is-decidable A → is-decidable B
is-decidable-equiv' e = is-decidable-equiv (inv-equiv e)
```
### Decidability implies double negation elimination
```agda
double-negation-elim-is-decidable :
{l : Level} {P : UU l} → is-decidable P → (¬¬ P → P)
double-negation-elim-is-decidable (inl x) p = x
double-negation-elim-is-decidable (inr x) p = ex-falso (p x)
```
### The double negation of `is-decidable` is always provable
```agda
double-negation-is-decidable : {l : Level} {P : UU l} → ¬¬ (is-decidable P)
double-negation-is-decidable {P = P} f =
map-neg (inr {A = P} {B = ¬ P}) f (map-neg (inl {A = P} {B = ¬ P}) f)
```
### Decidable types have ε-operators
```agda
elim-trunc-Prop-is-decidable :
{l : Level} {A : UU l} → is-decidable A → ε-operator-Hilbert A
elim-trunc-Prop-is-decidable (inl a) x = a
elim-trunc-Prop-is-decidable (inr f) x =
ex-falso (apply-universal-property-trunc-Prop x empty-Prop f)
```
### `is-decidable` is an idempotent operation
```agda
idempotent-is-decidable :
{l : Level} (P : UU l) → is-decidable (is-decidable P) → is-decidable P
idempotent-is-decidable P (inl (inl p)) = inl p
idempotent-is-decidable P (inl (inr np)) = inr np
idempotent-is-decidable P (inr np) = inr (λ p → np (inl p))
```
### Being inhabited or empty is a proposition
```agda
abstract
is-property-is-inhabited-or-empty :
{l1 : Level} (A : UU l1) → is-prop (is-inhabited-or-empty A)
is-property-is-inhabited-or-empty A =
is-prop-coproduct
( λ t → apply-universal-property-trunc-Prop t empty-Prop)
( is-prop-type-trunc-Prop)
( is-prop-neg)
is-inhabited-or-empty-Prop : {l1 : Level} → UU l1 → Prop l1
pr1 (is-inhabited-or-empty-Prop A) = is-inhabited-or-empty A
pr2 (is-inhabited-or-empty-Prop A) = is-property-is-inhabited-or-empty A
```
### Any inhabited type is a fixed point for `is-decidable`
```agda
is-fixed-point-is-decidable-is-inhabited :
{l : Level} {X : UU l} → type-trunc-Prop X → is-decidable X ≃ X
is-fixed-point-is-decidable-is-inhabited {l} {X} t =
right-unit-law-coproduct-is-empty X (¬ X) (is-nonempty-is-inhabited t)
```
### Raising types converves decidability
```agda
module _
(l : Level) {l1 : Level} (A : UU l1)
where
is-decidable-raise : is-decidable A → is-decidable (raise l A)
is-decidable-raise (inl p) = inl (map-raise p)
is-decidable-raise (inr np) = inr (λ p' → np (map-inv-raise p'))
```