# Epimorphisms with respect to truncated types
```agda
module foundation.epimorphisms-with-respect-to-truncated-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.commuting-squares-of-maps
open import foundation.connected-maps
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.function-extensionality
open import foundation.functoriality-truncation
open import foundation.precomposition-functions
open import foundation.sections
open import foundation.truncation-equivalences
open import foundation.truncations
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.propositional-maps
open import foundation-core.propositions
open import foundation-core.truncated-types
open import foundation-core.truncation-levels
open import synthetic-homotopy-theory.cocones-under-spans
open import synthetic-homotopy-theory.codiagonals-of-maps
open import synthetic-homotopy-theory.pushouts
```
</details>
## Idea
A map `f : A → B` is said to be a **`k`-epimorphism** if the precomposition
function
```text
- ∘ f : (B → X) → (A → X)
```
is an embedding for every `k`-truncated type `X`.
## Definitions
### `k`-epimorphisms
```agda
is-epimorphism-Truncated-Type :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} →
(A → B) → UUω
is-epimorphism-Truncated-Type k f =
{l : Level} (X : Truncated-Type l k) →
is-emb (precomp f (type-Truncated-Type X))
```
## Properties
### Every `k+1`-epimorphism is a `k`-epimorphism
```agda
is-epimorphism-is-epimorphism-succ-Truncated-Type :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) →
is-epimorphism-Truncated-Type (succ-𝕋 k) f →
is-epimorphism-Truncated-Type k f
is-epimorphism-is-epimorphism-succ-Truncated-Type k f H X =
H (truncated-type-succ-Truncated-Type k X)
```
### Every map is a `-1`-epimorphism
```agda
is-neg-one-epimorphism :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-epimorphism-Truncated-Type neg-one-𝕋 f
is-neg-one-epimorphism f P =
is-emb-is-prop
( is-prop-function-type (is-prop-type-Prop P))
( is-prop-function-type (is-prop-type-Prop P))
```
### Every `k`-equivalence is a `k`-epimorphism
```agda
is-epimorphism-is-truncation-equivalence-Truncated-Type :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) →
is-truncation-equivalence k f →
is-epimorphism-Truncated-Type k f
is-epimorphism-is-truncation-equivalence-Truncated-Type k f H X =
is-emb-is-equiv (is-equiv-precomp-is-truncation-equivalence k f H X)
```
### A map is a `k`-epimorphism if and only if its `k`-truncation is a `k`-epimorphism
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B)
where
is-epimorphism-is-epimorphism-map-trunc-Truncated-Type :
is-epimorphism-Truncated-Type k (map-trunc k f) →
is-epimorphism-Truncated-Type k f
is-epimorphism-is-epimorphism-map-trunc-Truncated-Type H X =
is-emb-bottom-is-emb-top-is-equiv-coherence-square-maps
( precomp (map-trunc k f) (type-Truncated-Type X))
( precomp unit-trunc (type-Truncated-Type X))
( precomp unit-trunc (type-Truncated-Type X))
( precomp f (type-Truncated-Type X))
( precomp-coherence-square-maps
( unit-trunc)
( f)
( map-trunc k f)
( unit-trunc)
( inv-htpy (coherence-square-map-trunc k f))
( type-Truncated-Type X))
( is-truncation-trunc X)
( is-truncation-trunc X)
( H X)
is-epimorphism-map-trunc-is-epimorphism-Truncated-Type :
is-epimorphism-Truncated-Type k f →
is-epimorphism-Truncated-Type k (map-trunc k f)
is-epimorphism-map-trunc-is-epimorphism-Truncated-Type H X =
is-emb-top-is-emb-bottom-is-equiv-coherence-square-maps
( precomp (map-trunc k f) (type-Truncated-Type X))
( precomp unit-trunc (type-Truncated-Type X))
( precomp unit-trunc (type-Truncated-Type X))
( precomp f (type-Truncated-Type X))
( precomp-coherence-square-maps
( unit-trunc)
( f)
( map-trunc k f)
( unit-trunc)
( inv-htpy (coherence-square-map-trunc k f))
( type-Truncated-Type X))
( is-truncation-trunc X)
( is-truncation-trunc X)
( H X)
```
### The class of `k`-epimorphisms is closed under composition and has the right cancellation property
```agda
module _
{l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3}
(g : B → C) (f : A → B)
where
is-epimorphism-comp-Truncated-Type :
is-epimorphism-Truncated-Type k g →
is-epimorphism-Truncated-Type k f →
is-epimorphism-Truncated-Type k (g ∘ f)
is-epimorphism-comp-Truncated-Type eg ef X =
is-emb-comp
( precomp f (type-Truncated-Type X))
( precomp g (type-Truncated-Type X))
( ef X)
( eg X)
is-epimorphism-left-factor-Truncated-Type :
is-epimorphism-Truncated-Type k (g ∘ f) →
is-epimorphism-Truncated-Type k f →
is-epimorphism-Truncated-Type k g
is-epimorphism-left-factor-Truncated-Type ec ef X =
is-emb-right-factor
( precomp f (type-Truncated-Type X))
( precomp g (type-Truncated-Type X))
( ef X)
( ec X)
```
### A map `f` is a `k`-epimorphism if and only if the horizontal/vertical projections from `cocone {X} f f` are equivalences for all `k`-types `X`
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B)
where
is-equiv-diagonal-into-fibers-precomp-is-epimorphism-Truncated-Type :
is-epimorphism-Truncated-Type k f →
{l : Level} (X : Truncated-Type l k) →
is-equiv (diagonal-into-fibers-precomp f (type-Truncated-Type X))
is-equiv-diagonal-into-fibers-precomp-is-epimorphism-Truncated-Type e X =
is-equiv-map-section-family
( λ g → g , refl)
( λ g →
is-proof-irrelevant-is-prop
( is-prop-map-is-emb (e X) (g ∘ f))
( g , refl))
is-equiv-diagonal-into-cocone-is-epimorphism-Truncated-Type :
is-epimorphism-Truncated-Type k f →
{l : Level} (X : Truncated-Type l k) →
is-equiv (diagonal-into-cocone f (type-Truncated-Type X))
is-equiv-diagonal-into-cocone-is-epimorphism-Truncated-Type e X =
is-equiv-comp
( map-equiv (compute-total-fiber-precomp f (type-Truncated-Type X)))
( diagonal-into-fibers-precomp f (type-Truncated-Type X))
( is-equiv-diagonal-into-fibers-precomp-is-epimorphism-Truncated-Type e X)
( is-equiv-map-equiv
( compute-total-fiber-precomp f (type-Truncated-Type X)))
is-equiv-horizontal-map-cocone-is-epimorphism-Truncated-Type :
is-epimorphism-Truncated-Type k f →
{l : Level} (X : Truncated-Type l k) →
is-equiv (horizontal-map-cocone {X = type-Truncated-Type X} f f)
is-equiv-horizontal-map-cocone-is-epimorphism-Truncated-Type e X =
is-equiv-left-factor
( horizontal-map-cocone f f)
( diagonal-into-cocone f (type-Truncated-Type X))
( is-equiv-id)
( is-equiv-diagonal-into-cocone-is-epimorphism-Truncated-Type e X)
is-equiv-vertical-map-cocone-is-epimorphism-Truncated-Type :
is-epimorphism-Truncated-Type k f →
{l : Level} (X : Truncated-Type l k) →
is-equiv (vertical-map-cocone {X = type-Truncated-Type X} f f)
is-equiv-vertical-map-cocone-is-epimorphism-Truncated-Type e X =
is-equiv-left-factor
( vertical-map-cocone f f)
( diagonal-into-cocone f (type-Truncated-Type X))
( is-equiv-id)
( is-equiv-diagonal-into-cocone-is-epimorphism-Truncated-Type e X)
is-epimorphism-is-equiv-horizontal-map-cocone-Truncated-Type :
( {l : Level} (X : Truncated-Type l k) →
is-equiv (horizontal-map-cocone {X = type-Truncated-Type X} f f)) →
is-epimorphism-Truncated-Type k f
is-epimorphism-is-equiv-horizontal-map-cocone-Truncated-Type h X =
is-emb-is-contr-fibers-values
( precomp f (type-Truncated-Type X))
( λ g →
is-contr-equiv
( Σ ( B → (type-Truncated-Type X))
( λ h → coherence-square-maps f f h g))
( compute-fiber-precomp f (type-Truncated-Type X) g)
( is-contr-is-equiv-pr1 (h X) g))
is-epimorphism-is-equiv-vertical-map-cocone-Truncated-Type :
( {l : Level} (X : Truncated-Type l k) →
is-equiv (vertical-map-cocone {X = type-Truncated-Type X} f f)) →
is-epimorphism-Truncated-Type k f
is-epimorphism-is-equiv-vertical-map-cocone-Truncated-Type h =
is-epimorphism-is-equiv-horizontal-map-cocone-Truncated-Type
( λ X →
is-equiv-comp
( vertical-map-cocone f f)
( swap-cocone f f (type-Truncated-Type X))
( is-equiv-swap-cocone f f (type-Truncated-Type X))
( h X))
```
### The codiagonal of a `k`-epimorphism is a `k`-equivalence
We consider the commutative diagram for any `k`-type `X`:
```text
horizontal-map-cocone
(B → X) <---------------------------- cocone f f X
| ≃ ∧
id | ≃ ≃ | (universal property)
∨ |
(B → X) ------------------------> (pushout f f → X)
precomp (codiagonal f)
```
Since the top (in case `f` is epic), left and right maps are all equivalences,
so is the bottom map.
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B)
where
is-truncation-equivalence-codiagonal-map-is-epimorphism-Truncated-Type :
is-epimorphism-Truncated-Type k f →
is-truncation-equivalence k (codiagonal-map f)
is-truncation-equivalence-codiagonal-map-is-epimorphism-Truncated-Type e =
is-truncation-equivalence-is-equiv-precomp k
( codiagonal-map f)
( λ l X →
is-equiv-right-factor
( ( horizontal-map-cocone f f) ∘
( map-equiv (equiv-up-pushout f f (type-Truncated-Type X))))
( precomp (codiagonal-map f) (type-Truncated-Type X))
( is-equiv-comp
( horizontal-map-cocone f f)
( map-equiv (equiv-up-pushout f f (type-Truncated-Type X)))
( is-equiv-map-equiv (equiv-up-pushout f f (type-Truncated-Type X)))
( is-equiv-horizontal-map-cocone-is-epimorphism-Truncated-Type
( k)
( f)
( e)
( X)))
( is-equiv-htpy
( id)
( λ g → eq-htpy (λ b → ap g (compute-inl-codiagonal-map f b)))
( is-equiv-id)))
```
### A map is a `k`-epimorphism if its codiagonal is a `k`-equivalence
We use the same diagram as above.
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B)
where
is-equiv-horizontal-map-cocone-is-truncation-equivalence-codiagonal-map :
is-truncation-equivalence k (codiagonal-map f) →
{l : Level} (X : Truncated-Type l k) →
is-equiv (horizontal-map-cocone {X = type-Truncated-Type X} f f)
is-equiv-horizontal-map-cocone-is-truncation-equivalence-codiagonal-map e X =
is-equiv-left-factor
( horizontal-map-cocone f f)
( ( map-equiv (equiv-up-pushout f f (type-Truncated-Type X))) ∘
( precomp (codiagonal-map f) (type-Truncated-Type X)))
( is-equiv-htpy
( id)
( λ g → eq-htpy (λ b → ap g (compute-inl-codiagonal-map f b)))
( is-equiv-id))
( is-equiv-comp
( map-equiv (equiv-up-pushout f f (type-Truncated-Type X)))
( precomp (codiagonal-map f) (type-Truncated-Type X))
( is-equiv-precomp-is-truncation-equivalence k (codiagonal-map f) e X)
( is-equiv-map-equiv (equiv-up-pushout f f (type-Truncated-Type X))))
is-epimorphism-is-truncation-equivalence-codiagonal-map-Truncated-Type :
is-truncation-equivalence k (codiagonal-map f) →
is-epimorphism-Truncated-Type k f
is-epimorphism-is-truncation-equivalence-codiagonal-map-Truncated-Type e X =
is-epimorphism-is-equiv-horizontal-map-cocone-Truncated-Type k f
( is-equiv-horizontal-map-cocone-is-truncation-equivalence-codiagonal-map
( e))
( X)
```
### A map is a `k`-epimorphism if and only if its codiagonal is `k`-connected
This strengthens the above result about the codiagonal being a `k`-equivalence.
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B)
where
is-epimorphism-is-connected-codiagonal-map-Truncated-Type :
is-connected-map k (codiagonal-map f) → is-epimorphism-Truncated-Type k f
is-epimorphism-is-connected-codiagonal-map-Truncated-Type c =
is-epimorphism-is-truncation-equivalence-codiagonal-map-Truncated-Type k f
( is-truncation-equivalence-is-connected-map (codiagonal-map f) c)
is-connected-codiagonal-map-is-epimorphism-Truncated-Type :
is-epimorphism-Truncated-Type k f → is-connected-map k (codiagonal-map f)
is-connected-codiagonal-map-is-epimorphism-Truncated-Type e =
is-connected-map-is-truncation-equivalence-section
( codiagonal-map f)
( k)
( inl-pushout f f , compute-inl-codiagonal-map f)
( is-truncation-equivalence-codiagonal-map-is-epimorphism-Truncated-Type
( k)
( f)
( e))
```
## See also
- [Acyclic maps](synthetic-homotopy-theory.acyclic-maps.md)
- [Dependent epimorphisms](foundation.dependent-epimorphisms.md)
- [Epimorphisms](foundation.epimorphisms.md)
- [Epimorphisms with respect to sets](foundation.epimorphisms-with-respect-to-sets.md)