# Sections
```agda
module foundation.sections where
open import foundation-core.sections public
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.commuting-triangles-of-homotopies
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.structure-identity-principle
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.injective-maps
open import foundation-core.retracts-of-types
open import foundation-core.torsorial-type-families
open import foundation-core.type-theoretic-principle-of-choice
```
</details>
## Definitions
### Sections of the projection map
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
map-section-family : ((x : A) → B x) → (A → Σ A B)
pr1 (map-section-family b a) = a
pr2 (map-section-family b a) = b a
htpy-map-section-family :
(b : (x : A) → B x) → (pr1 ∘ map-section-family b) ~ id
htpy-map-section-family b a = refl
section-dependent-function : ((x : A) → B x) → section (pr1 {B = B})
pr1 (section-dependent-function b) = map-section-family b
pr2 (section-dependent-function b) = htpy-map-section-family b
```
## Properties
### Extensionality of sections
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B}
where
coherence-htpy-section :
(s t : section f) → (map-section f s ~ map-section f t) → UU l2
coherence-htpy-section s t H =
coherence-triangle-homotopies
( is-section-map-section f s)
( is-section-map-section f t)
( f ·l H)
htpy-section : (s t : section f) → UU (l1 ⊔ l2)
htpy-section s t =
Σ (map-section f s ~ map-section f t) (coherence-htpy-section s t)
extensionality-section : (s t : section f) → (s = t) ≃ htpy-section s t
extensionality-section (s , H) =
extensionality-Σ
( λ {s'} H' K → H ~ ((f ·l K) ∙h H'))
( refl-htpy)
( refl-htpy)
( λ s' → equiv-funext)
( λ H' → equiv-funext)
eq-htpy-section :
(s t : section f)
(H : map-section f s ~ map-section f t)
(K : coherence-htpy-section s t H) →
s = t
eq-htpy-section s t H K =
map-inv-equiv (extensionality-section s t) (H , K)
```
### If the right factor of a composite has a section, then the type of sections of the left factor is a retract of the type of sections of the composite
```agda
is-retraction-section-left-map-triangle :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B)
(H : f ~ (g ∘ h)) (s : section h) →
section-right-map-triangle f g h H ∘ section-left-map-triangle f g h H s ~ id
is-retraction-section-left-map-triangle f g h H (k , K) (l , L) =
eq-htpy-section
( ( section-right-map-triangle f g h H ∘
section-left-map-triangle f g h H (k , K))
( l , L))
( l , L)
( K ·r l)
( ( inv-htpy-assoc-htpy
( inv-htpy (H ·r (k ∘ l)))
( H ·r (k ∘ l))
( (g ·l (K ·r l)) ∙h L)) ∙h
( ap-concat-htpy' ((g ·l (K ·r l)) ∙h L) (left-inv-htpy (H ·r (k ∘ l)))))
section-left-factor-retract-of-section-composition :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) →
section h → (section g) retract-of (section f)
pr1 (section-left-factor-retract-of-section-composition f g h H s) =
section-left-map-triangle f g h H s
pr1 (pr2 (section-left-factor-retract-of-section-composition f g h H s)) =
section-right-map-triangle f g h H
pr2 (pr2 (section-left-factor-retract-of-section-composition f g h H s)) =
is-retraction-section-left-map-triangle f g h H s
```
### The equivalence of sections of the projection map and sections of the type family
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
equiv-Π-section-pr1 : section (pr1 {B = B}) ≃ ((x : A) → B x)
equiv-Π-section-pr1 =
( left-unit-law-Σ-is-contr
( is-contr-equiv
( Π-total-fam (λ x y → y = x))
( inv-distributive-Π-Σ)
( is-contr-Π is-torsorial-Id'))
( id , refl-htpy)) ∘e
( equiv-right-swap-Σ) ∘e
( equiv-Σ-equiv-base ( λ s → pr1 s ~ id) ( distributive-Π-Σ))
```
### Any section of a type family is an equivalence if and only if each type in the family is contractible
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} (b : (x : A) → B x)
where
is-equiv-map-section-family :
((x : A) → is-contr (B x)) → is-equiv (map-section-family b)
is-equiv-map-section-family C =
is-equiv-top-map-triangle
( id)
( pr1)
( map-section-family b)
( htpy-map-section-family b)
( is-equiv-pr1-is-contr C)
( is-equiv-id)
equiv-section :
((x : A) → is-contr (B x)) → A ≃ Σ A B
pr1 (equiv-section C) = map-section-family b
pr2 (equiv-section C) = is-equiv-map-section-family C
is-contr-fam-is-equiv-map-section-family :
is-equiv (map-section-family b) → ((x : A) → is-contr (B x))
is-contr-fam-is-equiv-map-section-family H =
is-contr-is-equiv-pr1
( is-equiv-right-map-triangle id pr1
( map-section-family b)
( htpy-map-section-family b)
( is-equiv-id)
( H))
```
### Any section of a type family is an injective map
```agda
is-injective-map-section-family :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} (b : (x : A) → B x) →
is-injective (map-section-family b)
is-injective-map-section-family b = ap pr1
```