# Equivalences of cospans
```agda
module foundation.equivalences-cospans where
```
<details><summary>Imports</summary>
```agda
open import foundation.cospans
open import foundation.dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopy-induction
open import foundation.morphisms-cospans
open import foundation.structure-identity-principle
open import foundation.univalence
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.torsorial-type-families
```
</details>
## Idea
An {{#concept "equivalence of cospans" Agda=equiv-cospan}} from
[cospans](foundation.cospans.md) `(X , f , g)` to `(Y , h , k)` between types
`A` and `B` consists of an [equivalence](foundation-core.equivalences.md)
`e : X ≃ Y` such that the triangles
```text
e e
X ----> Y X ----> Y
\ / \ /
f \ / h g \ / k
∨ ∨ ∨ ∨
A B
```
both [commute](foundation.commuting-triangles-of-maps.md).
## Definitions
### Equivalences of cospans
```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2}
where
equiv-cospan : cospan l3 A B → cospan l4 A B → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4)
equiv-cospan c d =
Σ ( codomain-cospan c ≃ codomain-cospan d)
( λ e → coherence-hom-cospan c d (map-equiv e))
```
### The identity equivalence of cospans
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
where
id-equiv-cospan : (c : cospan l3 A B) → equiv-cospan c c
pr1 (id-equiv-cospan c) = id-equiv
pr1 (pr2 (id-equiv-cospan c)) = refl-htpy
pr2 (pr2 (id-equiv-cospan c)) = refl-htpy
```
## Properties
### Characterizing equality of cospans
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
where
equiv-eq-cospan : (c d : cospan l3 A B) → c = d → equiv-cospan c d
equiv-eq-cospan c .c refl = id-equiv-cospan c
is-torsorial-equiv-cospan :
(c : cospan l3 A B) → is-torsorial (equiv-cospan c)
is-torsorial-equiv-cospan c =
is-torsorial-Eq-structure
( is-torsorial-equiv (pr1 c))
( codomain-cospan c , id-equiv)
( is-torsorial-Eq-structure
( is-torsorial-htpy' (left-map-cospan c))
( left-map-cospan c , refl-htpy)
( is-torsorial-htpy' (right-map-cospan c)))
is-equiv-equiv-eq-cospan :
(c d : cospan l3 A B) → is-equiv (equiv-eq-cospan c d)
is-equiv-equiv-eq-cospan c =
fundamental-theorem-id (is-torsorial-equiv-cospan c) (equiv-eq-cospan c)
extensionality-cospan :
(c d : cospan l3 A B) → (c = d) ≃ (equiv-cospan c d)
pr1 (extensionality-cospan c d) = equiv-eq-cospan c d
pr2 (extensionality-cospan c d) = is-equiv-equiv-eq-cospan c d
eq-equiv-cospan : (c d : cospan l3 A B) → equiv-cospan c d → c = d
eq-equiv-cospan c d = map-inv-equiv (extensionality-cospan c d)
```