# Faithful maps
```agda
module foundation.faithful-maps where
```
<details><summary>Imports</summary>
```agda
open import foundation.0-maps
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.embeddings
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.propositional-maps
open import foundation-core.sets
open import foundation-core.truncated-maps
open import foundation-core.truncation-levels
```
</details>
## Idea
Since we sometimes think of types as ∞-groupoids, with the groupoid structure
provided implicitly by the identity type and its induction principle, we can
think of maps as functors of ∞-groupoids. We borrow some terminology of
functors, and call a map faithful if it induces embeddings on identity types.
## Definition
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-faithful : (A → B) → UU (l1 ⊔ l2)
is-faithful f = (x y : A) → is-emb (ap f {x} {y})
faithful-map : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2)
faithful-map A B = Σ (A → B) is-faithful
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
map-faithful-map : faithful-map A B → A → B
map-faithful-map = pr1
is-faithful-map-faithful-map :
(f : faithful-map A B) → is-faithful (map-faithful-map f)
is-faithful-map-faithful-map = pr2
emb-ap-faithful-map :
(f : faithful-map A B) {x y : A} →
(x = y) ↪ (map-faithful-map f x = map-faithful-map f y)
pr1 (emb-ap-faithful-map f {x} {y}) = ap (map-faithful-map f)
pr2 (emb-ap-faithful-map f {x} {y}) = is-faithful-map-faithful-map f x y
is-faithful-is-emb : {f : A → B} → is-emb f → is-faithful f
is-faithful-is-emb {f} H x y = is-emb-is-equiv (H x y)
faithful-map-emb : (A ↪ B) → faithful-map A B
pr1 (faithful-map-emb f) = map-emb f
pr2 (faithful-map-emb f) = is-faithful-is-emb (is-emb-map-emb f)
is-faithful-is-equiv : {f : A → B} → is-equiv f → is-faithful f
is-faithful-is-equiv H = is-faithful-is-emb (is-emb-is-equiv H)
faithful-map-equiv : (A ≃ B) → faithful-map A B
pr1 (faithful-map-equiv e) = map-equiv e
pr2 (faithful-map-equiv e) = is-faithful-is-equiv (is-equiv-map-equiv e)
emb-ap : (f : A ↪ B) (x y : A) → (x = y) ↪ (map-emb f x = map-emb f y)
pr1 (emb-ap f x y) = ap (map-emb f) {x} {y}
pr2 (emb-ap f x y) = is-faithful-is-emb (is-emb-map-emb f) x y
```
## Examples
### The identity map is faithful
```agda
module _
{l : Level} {A : UU l}
where
id-faithful-map : faithful-map A A
id-faithful-map = faithful-map-emb id-emb
is-faithful-id-faithful-map : is-faithful (id {A = A})
is-faithful-id-faithful-map = is-faithful-map-faithful-map id-faithful-map
```
### Any `0`-map is faithful
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B}
where
is-0-map-is-faithful : is-faithful f → is-0-map f
is-0-map-is-faithful H =
is-trunc-map-is-trunc-map-ap neg-one-𝕋 f
( λ x y → is-prop-map-is-emb (H x y))
is-faithful-is-0-map : is-0-map f → is-faithful f
is-faithful-is-0-map H x y =
is-emb-is-prop-map (is-trunc-map-ap-is-trunc-map neg-one-𝕋 f H x y)
```
## Properties
### The projection map of a family of sets is faithful
```agda
module _
{l1 l2 : Level} {A : UU l1}
where
abstract
is-faithful-pr1 :
{B : A → UU l2} → ((x : A) → is-set (B x)) → is-faithful (pr1 {B = B})
is-faithful-pr1 H = is-faithful-is-0-map (is-0-map-pr1 H)
pr1-faithful-map :
(B : A → Set l2) → faithful-map (Σ A (λ x → type-Set (B x))) A
pr1 (pr1-faithful-map B) = pr1
pr2 (pr1-faithful-map B) = is-faithful-pr1 (λ x → is-set-type-Set (B x))
```
### Faithful maps are closed under homotopies
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : f ~ g)
where
abstract
is-faithful-htpy : is-faithful g → is-faithful f
is-faithful-htpy K =
is-faithful-is-0-map (is-0-map-htpy H (is-0-map-is-faithful K))
```
### Faithful maps are closed under composition
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
where
abstract
is-faithful-comp :
(g : B → X) (h : A → B) →
is-faithful g → is-faithful h → is-faithful (g ∘ h)
is-faithful-comp g h is-faithful-g is-faithful-h =
is-faithful-is-0-map
( is-0-map-comp g h
( is-0-map-is-faithful is-faithful-g)
( is-0-map-is-faithful is-faithful-h))
abstract
is-faithful-left-map-triangle :
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) →
is-faithful g → is-faithful h → is-faithful f
is-faithful-left-map-triangle f g h H is-faithful-g is-faithful-h =
is-faithful-is-0-map
( is-0-map-left-map-triangle f g h H
( is-0-map-is-faithful is-faithful-g)
( is-0-map-is-faithful is-faithful-h))
```
### If a composite is faithful, then its right factor is faithful
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
where
is-faithful-right-factor :
(g : B → X) (h : A → B) →
is-faithful g → is-faithful (g ∘ h) → is-faithful h
is-faithful-right-factor g h is-faithful-g is-faithful-gh =
is-faithful-is-0-map
( is-0-map-right-factor g h
( is-0-map-is-faithful is-faithful-g)
( is-0-map-is-faithful is-faithful-gh))
is-faithful-top-map-triangle :
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) →
is-faithful g → is-faithful f → is-faithful h
is-faithful-top-map-triangle f g h H is-faithful-g is-faithful-f =
is-faithful-is-0-map
( is-0-map-top-map-triangle f g h H
( is-0-map-is-faithful is-faithful-g)
( is-0-map-is-faithful is-faithful-f))
```
### The map on total spaces induced by a family of truncated maps is truncated
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3}
{f : (x : A) → B x → C x}
where
is-faithful-tot : ((x : A) → is-faithful (f x)) → is-faithful (tot f)
is-faithful-tot H =
is-faithful-is-0-map (is-0-map-tot (λ x → is-0-map-is-faithful (H x)))
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3}
where
tot-faithful-map :
((x : A) → faithful-map (B x) (C x)) → faithful-map (Σ A B) (Σ A C)
pr1 (tot-faithful-map f) = tot (λ x → map-faithful-map (f x))
pr2 (tot-faithful-map f) =
is-faithful-tot (λ x → is-faithful-map-faithful-map (f x))
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
where
module _
{f : A → B} (C : B → UU l3)
where
abstract
is-faithful-map-Σ-map-base :
is-faithful f → is-faithful (map-Σ-map-base f C)
is-faithful-map-Σ-map-base H =
is-faithful-is-0-map
( is-0-map-map-Σ-map-base C (is-0-map-is-faithful H))
faithful-map-Σ-faithful-map-base :
(f : faithful-map A B) (C : B → UU l3) →
faithful-map (Σ A (λ a → C (map-faithful-map f a))) (Σ B C)
pr1 (faithful-map-Σ-faithful-map-base f C) =
map-Σ-map-base (map-faithful-map f) C
pr2 (faithful-map-Σ-faithful-map-base f C) =
is-faithful-map-Σ-map-base C (is-faithful-map-faithful-map f)
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3}
(D : B → UU l4) {f : A → B} {g : (x : A) → C x → D (f x)}
where
is-faithful-map-Σ :
is-faithful f → ((x : A) → is-faithful (g x)) → is-faithful (map-Σ D f g)
is-faithful-map-Σ H K =
is-faithful-is-0-map
( is-0-map-map-Σ D
( is-0-map-is-faithful H)
( λ x → is-0-map-is-faithful (K x)))
```