# Families of equivalences
```agda
module foundation.families-of-equivalences where
open import foundation-core.families-of-equivalences public
```
<details><summary>Imports</summary>
```agda
open import foundation.equivalences
open import foundation.universe-levels
open import foundation-core.propositions
```
</details>
## Idea
A **family of equivalences** is a family
```text
eᵢ : A i ≃ B i
```
of [equivalences](foundation-core.equivalences.md). Families of equivalences are
also called **fiberwise equivalences**.
## Properties
### Being a fiberwise equivalence is a proposition
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3}
where
is-property-is-fiberwise-equiv :
(f : (a : A) → B a → C a) → is-prop (is-fiberwise-equiv f)
is-property-is-fiberwise-equiv f =
is-prop-Π (λ a → is-property-is-equiv (f a))
```
## See also
- In
[Functoriality of dependent pair types](foundation-core.functoriality-dependent-pair-types.md)
we show that a family of maps is a fiberwise equivalence if and only if it
induces an equivalence on [total spaces](foundation.dependent-pair-types.md).