# The lesser limited principle of omniscience
```agda
module foundation.lesser-limited-principle-of-omniscience where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.parity-natural-numbers
open import foundation.disjunction
open import foundation.universe-levels
open import foundation-core.fibers-of-maps
open import foundation-core.propositions
open import foundation-core.sets
open import univalent-combinatorics.standard-finite-types
```
</details>
## Statement
The **lesser limited principle of omniscience** asserts that for any sequence
`f : ℕ → Fin 2` containing at most one `1`, either `f n = 0` for all even `n`
or `f n = 0` for all odd `n`.
```agda
LLPO : UU lzero
LLPO =
(f : ℕ → Fin 2) → is-prop (fiber f (one-Fin 1)) →
type-disjunction-Prop
( Π-Prop ℕ
( λ n →
function-Prop (is-even-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1))))
( Π-Prop ℕ
( λ n →
function-Prop (is-odd-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1))))
```
## See also
- [The principle of omniscience](foundation.principle-of-omniscience.md)
- [The limited principle of omniscience](foundation.limited-principle-of-omniscience.md)
- [The weak limited principle of omniscience](foundation.weak-limited-principle-of-omniscience.md)