# Logical equivalences
```agda
module foundation.logical-equivalences where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.equality-cartesian-product-types
open import foundation.equivalence-extensionality
open import foundation.function-extensionality
open import foundation.functoriality-cartesian-product-types
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.injective-maps
open import foundation-core.propositions
open import foundation-core.torsorial-type-families
```
</details>
## Idea
{{#concept "Logical equivalences" Agda=}} between two types `A` and `B` consist
of a map `A → B` and a map `B → A`. The type of logical equivalences between
types is the Curry-Howard interpretation of logical equivalences between
[propositions](foundation-core.propositions.md).
## Definition
### The structure on a map of being a logical equivalence
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
has-converse : (A → B) → UU (l1 ⊔ l2)
has-converse f = B → A
is-prop-has-converse :
is-prop A → (f : A → B) → is-prop (has-converse f)
is-prop-has-converse is-prop-A f = is-prop-function-type is-prop-A
has-converse-Prop :
{l1 l2 : Level} (A : Prop l1) {B : UU l2} → (type-Prop A → B) → Prop (l1 ⊔ l2)
has-converse-Prop A f =
( has-converse f ,
is-prop-has-converse (is-prop-type-Prop A) f)
```
### Logical equivalences between types
```agda
iff : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2)
iff A B = Σ (A → B) has-converse
infix 6 _↔_
_↔_ : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2)
_↔_ = iff
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (H : A ↔ B)
where
forward-implication : A → B
forward-implication = pr1 H
backward-implication : B → A
backward-implication = pr2 H
```
### Logical equivalences between propositions
```agda
module _
{l1 l2 : Level} (P : Prop l1) (Q : Prop l2)
where
type-iff-Prop : UU (l1 ⊔ l2)
type-iff-Prop = type-Prop P ↔ type-Prop Q
is-prop-iff-Prop : is-prop type-iff-Prop
is-prop-iff-Prop =
is-prop-product
( is-prop-function-type (is-prop-type-Prop Q))
( is-prop-function-type (is-prop-type-Prop P))
iff-Prop : Prop (l1 ⊔ l2)
pr1 iff-Prop = type-iff-Prop
pr2 iff-Prop = is-prop-iff-Prop
infix 6 _⇔_
_⇔_ : Prop (l1 ⊔ l2)
_⇔_ = iff-Prop
```
### The identity logical equivalence
```agda
id-iff : {l1 : Level} {A : UU l1} → A ↔ A
id-iff = (id , id)
```
### Composition of logical equivalences
```agda
infixr 15 _∘iff_
_∘iff_ :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} →
(B ↔ C) → (A ↔ B) → (A ↔ C)
pr1 ((g1 , g2) ∘iff (f1 , f2)) = g1 ∘ f1
pr2 ((g1 , g2) ∘iff (f1 , f2)) = f2 ∘ g2
```
### Inverting a logical equivalence
```agda
inv-iff :
{l1 l2 : Level} {A : UU l1} {B : UU l2} → (A ↔ B) → (B ↔ A)
pr1 (inv-iff (f , g)) = g
pr2 (inv-iff (f , g)) = f
```
## Properties
### Characterizing equality of logical equivalences
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
htpy-iff : (f g : A ↔ B) → UU (l1 ⊔ l2)
htpy-iff f g =
( forward-implication f ~ forward-implication g) ×
( backward-implication f ~ backward-implication g)
ext-iff : (f g : A ↔ B) → (f = g) ≃ htpy-iff f g
ext-iff f g = equiv-product equiv-funext equiv-funext ∘e equiv-pair-eq f g
refl-htpy-iff : (f : A ↔ B) → htpy-iff f f
pr1 (refl-htpy-iff f) = refl-htpy
pr2 (refl-htpy-iff f) = refl-htpy
htpy-eq-iff : {f g : A ↔ B} → f = g → htpy-iff f g
htpy-eq-iff {f} {g} = map-equiv (ext-iff f g)
eq-htpy-iff : (f g : A ↔ B) → htpy-iff f g → (f = g)
eq-htpy-iff f g = map-inv-equiv (ext-iff f g)
```
### Logical equivalences between propositions induce equivalences
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
abstract
is-equiv-has-converse-is-prop :
is-prop A → is-prop B → {f : A → B} → (B → A) → is-equiv f
is-equiv-has-converse-is-prop is-prop-A is-prop-B {f} g =
is-equiv-is-invertible
( g)
( λ y → eq-is-prop is-prop-B)
( λ x → eq-is-prop is-prop-A)
abstract
equiv-iff-is-prop : is-prop A → is-prop B → (A → B) → (B → A) → A ≃ B
pr1 (equiv-iff-is-prop is-prop-A is-prop-B f g) = f
pr2 (equiv-iff-is-prop is-prop-A is-prop-B f g) =
is-equiv-has-converse-is-prop is-prop-A is-prop-B g
module _
{l1 l2 : Level} (P : Prop l1) (Q : Prop l2)
where
abstract
is-equiv-has-converse :
{f : type-Prop P → type-Prop Q} → (type-Prop Q → type-Prop P) → is-equiv f
is-equiv-has-converse =
is-equiv-has-converse-is-prop
( is-prop-type-Prop P)
( is-prop-type-Prop Q)
equiv-iff' : type-Prop (P ⇔ Q) → (type-Prop P ≃ type-Prop Q)
pr1 (equiv-iff' t) = forward-implication t
pr2 (equiv-iff' t) =
is-equiv-has-converse-is-prop
( is-prop-type-Prop P)
( is-prop-type-Prop Q)
( backward-implication t)
equiv-iff :
(type-Prop P → type-Prop Q) → (type-Prop Q → type-Prop P) →
type-Prop P ≃ type-Prop Q
equiv-iff f g = equiv-iff' (f , g)
```
### Equivalences are logical equivalences
```agda
iff-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A ≃ B) → (A ↔ B)
pr1 (iff-equiv e) = map-equiv e
pr2 (iff-equiv e) = map-inv-equiv e
is-injective-iff-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} → is-injective (iff-equiv {A = A} {B})
is-injective-iff-equiv p = eq-htpy-equiv (pr1 (htpy-eq-iff p))
compute-fiber-iff-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} ((f , g) : A ↔ B) →
fiber (iff-equiv) (f , g) ≃ Σ (is-equiv f) (λ f' → map-inv-is-equiv f' ~ g)
compute-fiber-iff-equiv {A = A} {B} (f , g) =
( equiv-tot (λ _ → equiv-funext)) ∘e
( left-unit-law-Σ-is-contr (is-torsorial-Id' f) (f , refl)) ∘e
( inv-associative-Σ (A → B) (_= f) _) ∘e
( equiv-tot (λ _ → equiv-left-swap-Σ)) ∘e
( associative-Σ (A → B) _ _) ∘e
( equiv-tot (λ e → equiv-pair-eq (iff-equiv e) (f , g)))
```
### Two equal propositions are logically equivalent
```agda
iff-eq : {l1 : Level} {P Q : Prop l1} → P = Q → type-Prop (P ⇔ Q)
pr1 (iff-eq refl) = id
pr2 (iff-eq refl) = id
```
### Logical equivalence of propositions is equivalent to equivalence of propositions
```agda
abstract
is-equiv-equiv-iff :
{l1 l2 : Level} (P : Prop l1) (Q : Prop l2) →
is-equiv (equiv-iff' P Q)
is-equiv-equiv-iff P Q =
is-equiv-has-converse-is-prop
( is-prop-iff-Prop P Q)
( is-prop-type-equiv-Prop P Q)
( iff-equiv)
equiv-equiv-iff :
{l1 l2 : Level} (P : Prop l1) (Q : Prop l2) →
(type-Prop P ↔ type-Prop Q) ≃ (type-Prop P ≃ type-Prop Q)
pr1 (equiv-equiv-iff P Q) = equiv-iff' P Q
pr2 (equiv-equiv-iff P Q) = is-equiv-equiv-iff P Q
```
## Logical equivalences between dependent function types
```agda
module _
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
where
iff-Π-iff-family : ((i : I) → A i ↔ B i) → ((i : I) → A i) ↔ ((i : I) → B i)
pr1 (iff-Π-iff-family e) a i = forward-implication (e i) (a i)
pr2 (iff-Π-iff-family e) b i = backward-implication (e i) (b i)
```
## Reasoning with logical equivalences
Logical equivalences can be constructed by equational reasoning in the following
way:
```text
logical-equivalence-reasoning
X ↔ Y by equiv-1
↔ Z by equiv-2
↔ V by equiv-3
```
```agda
infixl 1 logical-equivalence-reasoning_
infixl 0 step-logical-equivalence-reasoning
logical-equivalence-reasoning_ :
{l1 : Level} (X : UU l1) → X ↔ X
pr1 (logical-equivalence-reasoning X) = id
pr2 (logical-equivalence-reasoning X) = id
step-logical-equivalence-reasoning :
{l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} →
(X ↔ Y) → (Z : UU l3) → (Y ↔ Z) → (X ↔ Z)
step-logical-equivalence-reasoning e Z f = f ∘iff e
syntax step-logical-equivalence-reasoning e Z f = e ↔ Z by f
```