# Maps in global subuniverses
```agda
module foundation.maps-in-global-subuniverses where
```
<details><summary>Imports</summary>
```agda
open import foundation.cartesian-morphisms-arrows
open import foundation.dependent-pair-types
open import foundation.fibers-of-maps
open import foundation.functoriality-fibers-of-maps
open import foundation.global-subuniverses
open import foundation.unit-type
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.propositions
```
</details>
## Idea
Given a [global subuniverse](foundation.global-subuniverses.md) `𝒫`, a map
`f : A → B` is said to be a
{{#concept "map in `𝒫`" Disambiguation="in a global subuniverse" Agda=is-in-global-subuniverse-map}},
or a **`𝒫`-map**, if its [fibers](foundation-core.fibers-of-maps.md) are in `𝒫`.
## Definitions
### The predicate on maps of being in a global subuniverse
```agda
module _
{α : Level → Level} (𝒫 : global-subuniverse α)
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where
is-in-global-subuniverse-map : UU (α (l1 ⊔ l2) ⊔ l2)
is-in-global-subuniverse-map =
(b : B) → is-in-global-subuniverse 𝒫 (fiber f b)
is-prop-is-in-global-subuniverse-map : is-prop is-in-global-subuniverse-map
is-prop-is-in-global-subuniverse-map =
is-prop-Π (λ b → is-prop-is-in-global-subuniverse 𝒫 (fiber f b))
is-in-global-subuniverse-map-Prop : Prop (α (l1 ⊔ l2) ⊔ l2)
is-in-global-subuniverse-map-Prop =
( is-in-global-subuniverse-map , is-prop-is-in-global-subuniverse-map)
```
## Properties
### A type is in `𝒫` if and only if its terminal projection is in `𝒫`
```agda
module _
{α : Level → Level} (𝒫 : global-subuniverse α)
{l1 : Level} {A : UU l1}
where
is-in-global-subuniverse-is-in-global-subuniverse-terminal-map :
is-in-global-subuniverse-map 𝒫 (terminal-map A) →
is-in-global-subuniverse 𝒫 A
is-in-global-subuniverse-is-in-global-subuniverse-terminal-map H =
is-closed-under-equiv-global-subuniverse 𝒫 l1 l1
( fiber (terminal-map A) star)
( A)
( equiv-fiber-terminal-map star)
( H star)
is-in-global-subuniverse-terminal-map-is-in-global-subuniverse :
is-in-global-subuniverse 𝒫 A →
is-in-global-subuniverse-map 𝒫 (terminal-map A)
is-in-global-subuniverse-terminal-map-is-in-global-subuniverse H u =
is-closed-under-equiv-global-subuniverse 𝒫 l1 l1
( A)
( fiber (terminal-map A) u)
( inv-equiv-fiber-terminal-map u)
( H)
```
### Closure under base change
Maps in `𝒫` are closed under base change.
```agda
module _
{α : Level → Level} (𝒫 : global-subuniverse α)
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
(f : A → B) (g : C → D)
where
is-in-global-subuniverse-map-base-change :
is-in-global-subuniverse-map 𝒫 f →
cartesian-hom-arrow g f →
is-in-global-subuniverse-map 𝒫 g
is-in-global-subuniverse-map-base-change F α d =
is-closed-under-equiv-global-subuniverse 𝒫 (l1 ⊔ l2) (l3 ⊔ l4)
( fiber f (map-codomain-cartesian-hom-arrow g f α d))
( fiber g d)
( inv-equiv (equiv-fibers-cartesian-hom-arrow g f α d))
( F (map-codomain-cartesian-hom-arrow g f α d))
```