# Multivariable decidable relations
```agda
module foundation.multivariable-decidable-relations where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.decidable-subtypes
open import foundation.multivariable-correspondences
open import foundation.multivariable-relations
open import foundation.universe-levels
open import univalent-combinatorics.standard-finite-types
```
</details>
## Idea
Consider a family of types `A i` indexed by `i : Fin n`. An `n`-ary decidable
relation on the tuples of elements of the `A i` is a decidable subtype of the
product of the `A i`.
## Definition
```agda
multivariable-decidable-relation :
{l1 : Level} (l2 : Level) (n : ℕ) (A : Fin n → UU l1) → UU (l1 ⊔ lsuc l2)
multivariable-decidable-relation l2 n A =
decidable-subtype l2 ((i : Fin n) → A i)
module _
{l1 l2 : Level} {n : ℕ} {A : Fin n → UU l1}
(R : multivariable-decidable-relation l2 n A)
where
multivariable-relation-multivariable-decidable-relation :
multivariable-relation l2 n A
multivariable-relation-multivariable-decidable-relation =
subtype-decidable-subtype R
multivariable-correspondence-multivariable-decidable-relation :
multivariable-correspondence l2 n A
multivariable-correspondence-multivariable-decidable-relation =
is-in-decidable-subtype R
```