# Powersets
```agda
module foundation.powersets where
```
<details><summary>Imports</summary>
```agda
open import foundation.subtypes
open import foundation.universe-levels
open import foundation-core.sets
open import order-theory.large-posets
open import order-theory.large-preorders
open import order-theory.posets
open import order-theory.preorders
```
</details>
## Idea
The **powerset** of a type is the set of all
[subtypes](foundation-core.subtypes.md) with respect to a given universe level.
## Definition
```agda
powerset :
{l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2)
powerset = subtype
```
## Properties
### The powerset is a set
```agda
module _
{l1 : Level} (A : UU l1)
where
is-set-powerset : {l2 : Level} → is-set (powerset l2 A)
is-set-powerset = is-set-subtype
powerset-Set : (l2 : Level) → Set (l1 ⊔ lsuc l2)
powerset-Set l2 = subtype-Set l2 A
```
### The powerset large preorder
```agda
module _
{l1 : Level} (A : UU l1)
where
powerset-Large-Preorder :
Large-Preorder (λ l → l1 ⊔ lsuc l) (λ l2 l3 → l1 ⊔ l2 ⊔ l3)
type-Large-Preorder powerset-Large-Preorder l = subtype l A
leq-prop-Large-Preorder powerset-Large-Preorder = leq-prop-subtype
refl-leq-Large-Preorder powerset-Large-Preorder = refl-leq-subtype
transitive-leq-Large-Preorder powerset-Large-Preorder = transitive-leq-subtype
```
### The powerset large poset
```agda
module _
{l1 : Level} (A : UU l1)
where
powerset-Large-Poset :
Large-Poset (λ l → l1 ⊔ lsuc l) (λ l2 l3 → l1 ⊔ l2 ⊔ l3)
large-preorder-Large-Poset powerset-Large-Poset = powerset-Large-Preorder A
antisymmetric-leq-Large-Poset powerset-Large-Poset P Q =
antisymmetric-leq-subtype P Q
```
### The powerset preorder at a universe level
```agda
module _
{l1 : Level} (A : UU l1)
where
powerset-Preorder : (l2 : Level) → Preorder (l1 ⊔ lsuc l2) (l1 ⊔ l2)
powerset-Preorder = preorder-Large-Preorder (powerset-Large-Preorder A)
```
### The powerset poset at a universe level
```agda
module _
{l1 : Level} (A : UU l1)
where
powerset-Poset : (l2 : Level) → Poset (l1 ⊔ lsuc l2) (l1 ⊔ l2)
powerset-Poset = poset-Large-Poset (powerset-Large-Poset A)
```