# Subtypes
```agda
module foundation-core.subtypes where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.logical-equivalences
open import foundation.subtype-identity-principle
open import foundation.universe-levels
open import foundation-core.embeddings
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.identity-types
open import foundation-core.propositional-maps
open import foundation-core.propositions
open import foundation-core.sets
open import foundation-core.transport-along-identifications
open import foundation-core.truncated-maps
open import foundation-core.truncated-types
open import foundation-core.truncation-levels
```
</details>
## Idea
A **subtype** of a type `A` is a family of
[propositions](foundation-core.propositions.md) over `A`. The underlying type of
a subtype `P` of `A` is the [total space](foundation.dependent-pair-types.md)
`Σ A B`.
## Definitions
### Subtypes
```agda
module _
{l1 l2 : Level} {A : UU l1} (B : A → UU l2)
where
is-subtype : UU (l1 ⊔ l2)
is-subtype = (x : A) → is-prop (B x)
is-property : UU (l1 ⊔ l2)
is-property = is-subtype
subtype : {l1 : Level} (l : Level) (A : UU l1) → UU (l1 ⊔ lsuc l)
subtype l A = A → Prop l
module _
{l1 l2 : Level} {A : UU l1} (P : subtype l2 A)
where
is-in-subtype : A → UU l2
is-in-subtype x = type-Prop (P x)
is-prop-is-in-subtype : (x : A) → is-prop (is-in-subtype x)
is-prop-is-in-subtype x = is-prop-type-Prop (P x)
type-subtype : UU (l1 ⊔ l2)
type-subtype = Σ A is-in-subtype
inclusion-subtype : type-subtype → A
inclusion-subtype = pr1
ap-inclusion-subtype :
(x y : type-subtype) →
x = y → (inclusion-subtype x = inclusion-subtype y)
ap-inclusion-subtype x y p = ap inclusion-subtype p
is-in-subtype-inclusion-subtype :
(x : type-subtype) → is-in-subtype (inclusion-subtype x)
is-in-subtype-inclusion-subtype = pr2
eq-is-in-subtype :
{x : A} {p q : is-in-subtype x} → p = q
eq-is-in-subtype {x} = eq-is-prop (is-prop-is-in-subtype x)
is-closed-under-eq-subtype :
{x y : A} → is-in-subtype x → (x = y) → is-in-subtype y
is-closed-under-eq-subtype p refl = p
is-closed-under-eq-subtype' :
{x y : A} → is-in-subtype y → (x = y) → is-in-subtype x
is-closed-under-eq-subtype' p refl = p
```
### The containment relation on subtypes
```agda
module _
{l1 : Level} {A : UU l1}
where
leq-prop-subtype :
{l2 l3 : Level} → subtype l2 A → subtype l3 A → Prop (l1 ⊔ l2 ⊔ l3)
leq-prop-subtype P Q =
Π-Prop A (λ x → hom-Prop (P x) (Q x))
infix 5 _⊆_
_⊆_ :
{l2 l3 : Level} (P : subtype l2 A) (Q : subtype l3 A) → UU (l1 ⊔ l2 ⊔ l3)
P ⊆ Q = type-Prop (leq-prop-subtype P Q)
is-prop-leq-subtype :
{l2 l3 : Level} (P : subtype l2 A) (Q : subtype l3 A) → is-prop (P ⊆ Q)
is-prop-leq-subtype P Q =
is-prop-type-Prop (leq-prop-subtype P Q)
```
## Properties
### The containment relation on subtypes is a preordering
```agda
module _
{l1 : Level} {A : UU l1}
where
refl-leq-subtype : {l2 : Level} (P : subtype l2 A) → P ⊆ P
refl-leq-subtype P x = id
transitive-leq-subtype :
{l2 l3 l4 : Level}
(P : subtype l2 A) (Q : subtype l3 A) (R : subtype l4 A) →
Q ⊆ R → P ⊆ Q → P ⊆ R
transitive-leq-subtype P Q R H K x = H x ∘ K x
```
### Equality in subtypes
```agda
module _
{l1 l2 : Level} {A : UU l1} (P : subtype l2 A)
where
Eq-type-subtype : (x y : type-subtype P) → UU l1
Eq-type-subtype x y = (pr1 x = pr1 y)
extensionality-type-subtype' :
(a b : type-subtype P) → (a = b) ≃ (pr1 a = pr1 b)
extensionality-type-subtype' (a , p) =
extensionality-type-subtype P p refl (λ x → id-equiv)
eq-type-subtype :
{a b : type-subtype P} → (pr1 a = pr1 b) → a = b
eq-type-subtype {a} {b} = map-inv-equiv (extensionality-type-subtype' a b)
```
### If `B` is a subtype of `A`, then the projection map `Σ A B → A` is a propositional map
```agda
module _
{l1 l2 : Level} {A : UU l1} (B : subtype l2 A)
where
abstract
is-prop-map-inclusion-subtype : is-prop-map (inclusion-subtype B)
is-prop-map-inclusion-subtype =
( λ x →
is-prop-equiv
( equiv-fiber-pr1 (is-in-subtype B) x)
( is-prop-is-in-subtype B x))
prop-map-subtype : prop-map (type-subtype B) A
pr1 prop-map-subtype = inclusion-subtype B
pr2 prop-map-subtype = is-prop-map-inclusion-subtype
```
### If `B` is a subtype of `A`, then the projection map `Σ A B → A` is an embedding
```agda
module _
{l1 l2 : Level} {A : UU l1} (B : subtype l2 A)
where
abstract
is-emb-inclusion-subtype : is-emb (inclusion-subtype B)
is-emb-inclusion-subtype =
is-emb-is-prop-map
( is-prop-map-inclusion-subtype B)
emb-subtype : type-subtype B ↪ A
pr1 emb-subtype = inclusion-subtype B
pr2 emb-subtype = is-emb-inclusion-subtype
equiv-ap-inclusion-subtype :
{s t : type-subtype B} →
(s = t) ≃ (inclusion-subtype B s = inclusion-subtype B t)
pr1 (equiv-ap-inclusion-subtype {s} {t}) = ap-inclusion-subtype B s t
pr2 (equiv-ap-inclusion-subtype {s} {t}) = is-emb-inclusion-subtype s t
```
### Restriction of a `k`-truncated map to a `k`-truncated map into a subtype
```agda
module _
{l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} (B : subtype l2 A) {X : UU l3}
where
abstract
is-trunc-map-into-subtype :
{f : X → A} → is-trunc-map k f →
(p : (x : X) → is-in-subtype B (f x)) →
is-trunc-map k {B = type-subtype B} (λ x → (f x , p x))
is-trunc-map-into-subtype H p (a , b) =
is-trunc-equiv k _
( equiv-tot (λ x → extensionality-type-subtype' B _ _))
( H a)
trunc-map-into-subtype :
(f : trunc-map k X A) → ((x : X) → is-in-subtype B (map-trunc-map f x)) →
trunc-map k X (type-subtype B)
pr1 (trunc-map-into-subtype f p) x = (map-trunc-map f x , p x)
pr2 (trunc-map-into-subtype f p) =
is-trunc-map-into-subtype
( is-trunc-map-map-trunc-map f)
( p)
```
### Restriction of an embedding to an embedding into a subtype
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} (B : subtype l2 A) {X : UU l3} (f : X ↪ A)
(p : (x : X) → is-in-subtype B (map-emb f x))
where
map-emb-into-subtype : X → type-subtype B
pr1 (map-emb-into-subtype x) = map-emb f x
pr2 (map-emb-into-subtype x) = p x
abstract
is-emb-map-emb-into-subtype : is-emb map-emb-into-subtype
is-emb-map-emb-into-subtype =
is-emb-is-prop-map
( is-trunc-map-into-subtype
( neg-one-𝕋)
( B)
( is-prop-map-is-emb (is-emb-map-emb f))
( p))
emb-into-subtype : X ↪ type-subtype B
pr1 emb-into-subtype = map-emb-into-subtype
pr2 emb-into-subtype = is-emb-map-emb-into-subtype
```
### If the projection map of a type family is an embedding, then the type family is a subtype
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
abstract
is-subtype-is-emb-pr1 : is-emb (pr1 {B = B}) → is-subtype B
is-subtype-is-emb-pr1 H x =
is-prop-equiv' (equiv-fiber-pr1 B x) (is-prop-map-is-emb H x)
```
### A subtype of a `k+1`-truncated type is `k+1`-truncated
```agda
module _
{l1 l2 : Level} (k : 𝕋) {A : UU l1} (P : subtype l2 A)
where
abstract
is-trunc-type-subtype :
is-trunc (succ-𝕋 k) A → is-trunc (succ-𝕋 k) (type-subtype P)
is-trunc-type-subtype =
is-trunc-is-emb k
( inclusion-subtype P)
( is-emb-inclusion-subtype P)
module _
{l1 l2 : Level} {A : UU l1} (P : subtype l2 A)
where
abstract
is-prop-type-subtype : is-prop A → is-prop (type-subtype P)
is-prop-type-subtype = is-trunc-type-subtype neg-two-𝕋 P
abstract
is-set-type-subtype : is-set A → is-set (type-subtype P)
is-set-type-subtype = is-trunc-type-subtype neg-one-𝕋 P
prop-subprop :
{l1 l2 : Level} (A : Prop l1) (P : subtype l2 (type-Prop A)) → Prop (l1 ⊔ l2)
pr1 (prop-subprop A P) = type-subtype P
pr2 (prop-subprop A P) = is-prop-type-subtype P (is-prop-type-Prop A)
set-subset :
{l1 l2 : Level} (A : Set l1) (P : subtype l2 (type-Set A)) → Set (l1 ⊔ l2)
pr1 (set-subset A P) = type-subtype P
pr2 (set-subset A P) = is-set-type-subtype P (is-set-type-Set A)
```
### Logically equivalent subtypes induce equivalences on the underlying type of a subtype
```agda
equiv-type-subtype :
{ l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2} {Q : A → UU l3} →
( is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q) →
( f : (x : A) → P x → Q x) →
( g : (x : A) → Q x → P x) →
( Σ A P) ≃ (Σ A Q)
pr1 (equiv-type-subtype is-subtype-P is-subtype-Q f g) = tot f
pr2 (equiv-type-subtype is-subtype-P is-subtype-Q f g) =
is-equiv-tot-is-fiberwise-equiv {f = f}
( λ x →
is-equiv-has-converse-is-prop
( is-subtype-P x)
( is-subtype-Q x)
( g x))
```
### Equivalences of subtypes
```agda
equiv-subtype-equiv :
{l1 l2 l3 l4 : Level}
{A : UU l1} {B : UU l2} (e : A ≃ B)
(C : A → Prop l3) (D : B → Prop l4) →
((x : A) → type-Prop (C x) ↔ type-Prop (D (map-equiv e x))) →
type-subtype C ≃ type-subtype D
equiv-subtype-equiv e C D H =
equiv-Σ (type-Prop ∘ D) e (λ x → equiv-iff' (C x) (D (map-equiv e x)) (H x))
```
```agda
abstract
is-equiv-subtype-is-equiv :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2}
{P : A → UU l3} {Q : B → UU l4}
(is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q)
(f : A → B) (g : (x : A) → P x → Q (f x)) →
is-equiv f → ((x : A) → (Q (f x)) → P x) → is-equiv (map-Σ Q f g)
is-equiv-subtype-is-equiv {Q = Q} is-subtype-P is-subtype-Q f g is-equiv-f h =
is-equiv-map-Σ Q is-equiv-f
( λ x →
is-equiv-has-converse-is-prop
( is-subtype-P x)
( is-subtype-Q (f x))
( h x))
abstract
is-equiv-subtype-is-equiv' :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2}
{P : A → UU l3} {Q : B → UU l4}
(is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q)
(f : A → B) (g : (x : A) → P x → Q (f x)) →
(is-equiv-f : is-equiv f) →
((y : B) → (Q y) → P (map-inv-is-equiv is-equiv-f y)) →
is-equiv (map-Σ Q f g)
is-equiv-subtype-is-equiv' {P = P} {Q}
is-subtype-P is-subtype-Q f g is-equiv-f h =
is-equiv-map-Σ Q is-equiv-f
( λ x →
is-equiv-has-converse-is-prop
( is-subtype-P x)
( is-subtype-Q (f x))
( (tr P (is-retraction-map-inv-is-equiv is-equiv-f x)) ∘ (h (f x))))
```