# Product decompositions of types in a subuniverse
```agda
module foundation.product-decompositions-subuniverse where
```
<details><summary>Imports</summary>
```agda
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.subuniverses
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.unit-type
open import foundation.univalence
open import foundation.universe-levels
open import foundation-core.contractible-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.propositions
```
</details>
## Definitions
### Binary product decomposition of types in a subuniverse
```agda
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (X : type-subuniverse P)
where
binary-product-Decomposition-Subuniverse : UU (lsuc l1 ⊔ l2)
binary-product-Decomposition-Subuniverse =
Σ ( type-subuniverse P)
( λ k1 →
Σ ( type-subuniverse P)
( λ k2 →
( inclusion-subuniverse P X ≃
( (inclusion-subuniverse P k1) ×
(inclusion-subuniverse P k2)))))
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (X : type-subuniverse P)
(d : binary-product-Decomposition-Subuniverse P X)
where
left-summand-binary-product-Decomposition-Subuniverse : type-subuniverse P
left-summand-binary-product-Decomposition-Subuniverse = pr1 d
type-left-summand-binary-product-Decomposition-Subuniverse : UU l1
type-left-summand-binary-product-Decomposition-Subuniverse =
inclusion-subuniverse
P
left-summand-binary-product-Decomposition-Subuniverse
right-summand-binary-product-Decomposition-Subuniverse : type-subuniverse P
right-summand-binary-product-Decomposition-Subuniverse = pr1 (pr2 d)
type-right-summand-binary-product-Decomposition-Subuniverse : UU l1
type-right-summand-binary-product-Decomposition-Subuniverse =
inclusion-subuniverse
P
right-summand-binary-product-Decomposition-Subuniverse
matching-correspondence-binary-product-Decomposition-Subuniverse :
inclusion-subuniverse P X ≃
( type-left-summand-binary-product-Decomposition-Subuniverse ×
type-right-summand-binary-product-Decomposition-Subuniverse)
matching-correspondence-binary-product-Decomposition-Subuniverse = pr2 (pr2 d)
```
### Iterated binary product decompositions
```agda
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (X : type-subuniverse P)
where
left-iterated-binary-product-Decomposition-Subuniverse : UU (lsuc l1 ⊔ l2)
left-iterated-binary-product-Decomposition-Subuniverse =
Σ ( binary-product-Decomposition-Subuniverse P X)
( λ d →
binary-product-Decomposition-Subuniverse
( P)
( left-summand-binary-product-Decomposition-Subuniverse P X d))
right-iterated-binary-product-Decomposition-Subuniverse : UU (lsuc l1 ⊔ l2)
right-iterated-binary-product-Decomposition-Subuniverse =
Σ ( binary-product-Decomposition-Subuniverse P X)
( λ d →
binary-product-Decomposition-Subuniverse
( P)
( right-summand-binary-product-Decomposition-Subuniverse P X d))
```
### Ternary product Decomposition-subuniverses
```agda
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (X : type-subuniverse P)
where
ternary-product-Decomposition-Subuniverse : UU (lsuc l1 ⊔ l2)
ternary-product-Decomposition-Subuniverse =
Σ ( type-subuniverse P × (type-subuniverse P × type-subuniverse P))
( λ x →
inclusion-subuniverse P X ≃
( inclusion-subuniverse P (pr1 x) ×
( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x)))))
module _
(d : ternary-product-Decomposition-Subuniverse)
where
types-ternary-product-Decomposition-Subuniverse :
type-subuniverse P × (type-subuniverse P × type-subuniverse P)
types-ternary-product-Decomposition-Subuniverse = pr1 d
first-summand-ternary-product-Decomposition-Subuniverse : type-subuniverse P
first-summand-ternary-product-Decomposition-Subuniverse =
(pr1 types-ternary-product-Decomposition-Subuniverse)
second-summand-ternary-product-Decomposition-Subuniverse :
type-subuniverse P
second-summand-ternary-product-Decomposition-Subuniverse =
(pr1 (pr2 types-ternary-product-Decomposition-Subuniverse))
third-summand-ternary-product-Decomposition-Subuniverse : type-subuniverse P
third-summand-ternary-product-Decomposition-Subuniverse =
(pr2 (pr2 types-ternary-product-Decomposition-Subuniverse))
matching-correspondence-ternary-productuct-Decomposition-Subuniverse :
inclusion-subuniverse P X ≃
( inclusion-subuniverse
P
first-summand-ternary-product-Decomposition-Subuniverse ×
( ( inclusion-subuniverse
P
second-summand-ternary-product-Decomposition-Subuniverse) ×
inclusion-subuniverse
P
third-summand-ternary-product-Decomposition-Subuniverse))
matching-correspondence-ternary-productuct-Decomposition-Subuniverse = pr2 d
```
## Propositions
### Equivalence between binary product Decomposition-Subuniverse induce by
commutativiy of product
```agda
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (X : type-subuniverse P)
where
equiv-commutative-binary-product-Decomposition-Subuniverse :
binary-product-Decomposition-Subuniverse P X ≃
binary-product-Decomposition-Subuniverse P X
equiv-commutative-binary-product-Decomposition-Subuniverse =
( ( associative-Σ
( type-subuniverse P)
( λ _ → type-subuniverse P)
( _)) ∘e
( ( equiv-Σ
( _)
( commutative-product)
( λ x →
equiv-postcomp-equiv
( commutative-product)
(inclusion-subuniverse P X))) ∘e
( ( inv-associative-Σ
( type-subuniverse P)
( λ _ → type-subuniverse P)
( _)))))
```
### Equivalence between iterated product and ternary product decomposition
```agda
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (X : type-subuniverse P)
(C1 : is-closed-under-products-subuniverse P)
where
private
map-reassociate-left-iterated-product-Decomposition-Subuniverse :
left-iterated-binary-product-Decomposition-Subuniverse P X →
Σ ( type-subuniverse P × (type-subuniverse P × type-subuniverse P))
( λ x →
Σ ( Σ ( type-subuniverse P)
( λ A →
inclusion-subuniverse P A ≃
( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x)))))
( λ A →
inclusion-subuniverse P X ≃
( inclusion-subuniverse P (pr1 A) ×
inclusion-subuniverse P (pr1 x))))
map-reassociate-left-iterated-product-Decomposition-Subuniverse
( (A , B , e) , C , D , f) =
( (B , C , D) , (A , f) , e)
map-inv-reassociate-left-iterated-product-Decomposition-Subuniverse :
Σ ( type-subuniverse P × (type-subuniverse P × type-subuniverse P))
( λ x →
Σ ( Σ ( type-subuniverse P)
( λ A →
inclusion-subuniverse P A ≃
( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x)))))
( λ A →
inclusion-subuniverse P X ≃
( inclusion-subuniverse P (pr1 A) ×
inclusion-subuniverse P (pr1 x)))) →
left-iterated-binary-product-Decomposition-Subuniverse P X
map-inv-reassociate-left-iterated-product-Decomposition-Subuniverse
( (B , C , D) , (A , f) , e) =
( (A , B , e) , C , D , f)
equiv-reassociate-left-iterated-product-Decomposition-Subuniverse :
left-iterated-binary-product-Decomposition-Subuniverse P X ≃
Σ ( type-subuniverse P × (type-subuniverse P × type-subuniverse P))
( λ x →
Σ ( Σ ( type-subuniverse P)
( λ A →
inclusion-subuniverse P A ≃
( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x)))))
( λ A →
inclusion-subuniverse P X ≃
( inclusion-subuniverse P (pr1 A) ×
inclusion-subuniverse P (pr1 x))))
pr1 equiv-reassociate-left-iterated-product-Decomposition-Subuniverse =
map-reassociate-left-iterated-product-Decomposition-Subuniverse
pr2 equiv-reassociate-left-iterated-product-Decomposition-Subuniverse =
is-equiv-is-invertible
map-inv-reassociate-left-iterated-product-Decomposition-Subuniverse
refl-htpy
refl-htpy
equiv-ternary-left-iterated-product-Decomposition-Subuniverse :
left-iterated-binary-product-Decomposition-Subuniverse P X ≃
ternary-product-Decomposition-Subuniverse P X
equiv-ternary-left-iterated-product-Decomposition-Subuniverse =
( ( equiv-tot
( λ x →
( ( equiv-postcomp-equiv
( commutative-product)
( inclusion-subuniverse P X)) ∘e
( ( left-unit-law-Σ-is-contr
( is-torsorial-equiv-subuniverse'
( P)
( ( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x))) ,
C1 (pr2 (pr1 (pr2 x))) (pr2 (pr2 (pr2 x))))))
( ( ( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x))) ,
C1 (pr2 (pr1 (pr2 x))) (pr2 (pr2 (pr2 x)))) ,
id-equiv))))) ∘e
( ( equiv-reassociate-left-iterated-product-Decomposition-Subuniverse)))
private
map-reassociate-right-iterated-product-Decomposition-Subuniverse :
right-iterated-binary-product-Decomposition-Subuniverse P X →
Σ ( type-subuniverse P × (type-subuniverse P × type-subuniverse P))
( λ x →
Σ ( Σ ( type-subuniverse P)
( λ B →
inclusion-subuniverse P B ≃
( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x)))))
( λ B →
inclusion-subuniverse P X ≃
( inclusion-subuniverse P (pr1 x) ×
inclusion-subuniverse P (pr1 B))))
map-reassociate-right-iterated-product-Decomposition-Subuniverse
( (A , B , e) , C , D , f) =
( (A , C , D) , (B , f) , e)
map-inv-reassociate-right-iterated-product-Decomposition-Subuniverse :
Σ ( type-subuniverse P × (type-subuniverse P × type-subuniverse P))
( λ x →
Σ ( Σ ( type-subuniverse P)
( λ B →
inclusion-subuniverse P B ≃
( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x)))))
( λ B →
inclusion-subuniverse P X ≃
( inclusion-subuniverse P (pr1 x) ×
inclusion-subuniverse P (pr1 B)))) →
right-iterated-binary-product-Decomposition-Subuniverse P X
map-inv-reassociate-right-iterated-product-Decomposition-Subuniverse
( (A , C , D) , (B , f) , e) =
( (A , B , e) , C , D , f)
equiv-reassociate-right-iterated-product-Decomposition-Subuniverse :
right-iterated-binary-product-Decomposition-Subuniverse P X ≃
Σ ( type-subuniverse P × (type-subuniverse P × type-subuniverse P))
( λ x →
Σ ( Σ ( type-subuniverse P)
( λ B →
inclusion-subuniverse P B ≃
( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x)))))
( λ B →
inclusion-subuniverse P X ≃
( inclusion-subuniverse P (pr1 x) ×
inclusion-subuniverse P (pr1 B))))
pr1 equiv-reassociate-right-iterated-product-Decomposition-Subuniverse =
map-reassociate-right-iterated-product-Decomposition-Subuniverse
pr2 equiv-reassociate-right-iterated-product-Decomposition-Subuniverse =
is-equiv-is-invertible
map-inv-reassociate-right-iterated-product-Decomposition-Subuniverse
refl-htpy
refl-htpy
equiv-ternary-right-iterated-product-Decomposition-Subuniverse :
right-iterated-binary-product-Decomposition-Subuniverse P X ≃
ternary-product-Decomposition-Subuniverse P X
equiv-ternary-right-iterated-product-Decomposition-Subuniverse =
( ( equiv-tot
( λ x →
left-unit-law-Σ-is-contr
( is-torsorial-equiv-subuniverse'
( P)
( ( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x))) ,
( C1 (pr2 (pr1 (pr2 x))) (pr2 (pr2 (pr2 x))))))
( ( ( inclusion-subuniverse P (pr1 (pr2 x)) ×
inclusion-subuniverse P (pr2 (pr2 x))) ,
( C1 (pr2 (pr1 (pr2 x))) (pr2 (pr2 (pr2 x))))) ,
id-equiv))) ∘e
( ( equiv-reassociate-right-iterated-product-Decomposition-Subuniverse)))
```
### Product-decomposition with contractible right summand
```agda
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (X : type-subuniverse P)
(C1 : is-in-subuniverse P (raise-unit l1))
where
equiv-is-contr-right-summand-binary-product-Decomposition-Subuniverse :
( Σ ( binary-product-Decomposition-Subuniverse P X)
( λ d →
is-contr
( inclusion-subuniverse P
( right-summand-binary-product-Decomposition-Subuniverse
P
X
d)))) ≃
Σ ( type-subuniverse P)
( λ Y → inclusion-subuniverse P X ≃ pr1 Y)
equiv-is-contr-right-summand-binary-product-Decomposition-Subuniverse =
( ( equiv-tot
( λ x →
( ( equiv-postcomp-equiv
( right-unit-law-product-is-contr is-contr-raise-unit)
( inclusion-subuniverse P X)) ∘e
( ( left-unit-law-Σ-is-contr
( ( ( ( raise-unit l1) ,
C1) ,
is-contr-raise-unit) ,
( λ x →
eq-pair-Σ
( eq-pair-Σ
( eq-equiv
( equiv-is-contr is-contr-raise-unit (pr2 x)))
( eq-is-prop (is-prop-type-Prop (P (pr1 (pr1 x))))))
( eq-is-prop is-property-is-contr)))
( ( raise-unit l1 , C1) ,
is-contr-raise-unit)) ∘e
( ( inv-associative-Σ _ _ _) ∘e
( ( equiv-tot (λ _ → commutative-product)) ∘e
( ( associative-Σ _ _ _)))))))) ∘e
( ( associative-Σ _ _ _)))
```