# Products of equivalence relataions
```agda
module foundation.products-equivalence-relations where
```
<details><summary>Imports</summary>
```agda
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.products-binary-relations
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.equivalence-relations
```
</details>
## Idea
Given two equivalence relations `R` and `S`, their product is an equivalence
relation.
## Definition
### The product of two equivalence relations
```agda
module _
{l1 l2 l3 l4 : Level}
{A : UU l1} (R : equivalence-relation l2 A)
{B : UU l3} (S : equivalence-relation l4 B)
where
reflexive-product-Relation-Prop :
is-reflexive-Relation-Prop
( product-Relation-Prop
( prop-equivalence-relation R)
( prop-equivalence-relation S))
pr1 (reflexive-product-Relation-Prop x) = refl-equivalence-relation R (pr1 x)
pr2 (reflexive-product-Relation-Prop x) = refl-equivalence-relation S (pr2 x)
symmetric-product-Relation-Prop :
is-symmetric-Relation-Prop
( product-Relation-Prop
( prop-equivalence-relation R)
( prop-equivalence-relation S))
pr1 (symmetric-product-Relation-Prop x y (p , q)) =
symmetric-equivalence-relation R (pr1 x) (pr1 y) p
pr2 (symmetric-product-Relation-Prop x y (p , q)) =
symmetric-equivalence-relation S (pr2 x) (pr2 y) q
transitive-product-Relation-Prop :
is-transitive-Relation-Prop
( product-Relation-Prop
( prop-equivalence-relation R)
( prop-equivalence-relation S))
pr1 (transitive-product-Relation-Prop x y z (p , q) (p' , q')) =
transitive-equivalence-relation R (pr1 x) (pr1 y) (pr1 z) p p'
pr2 (transitive-product-Relation-Prop x y z (p , q) (p' , q')) =
transitive-equivalence-relation S (pr2 x) (pr2 y) (pr2 z) q q'
product-equivalence-relation : equivalence-relation (l2 ⊔ l4) (A × B)
pr1 product-equivalence-relation =
product-Relation-Prop
( prop-equivalence-relation R)
( prop-equivalence-relation S)
pr1 (pr2 product-equivalence-relation) = reflexive-product-Relation-Prop
pr1 (pr2 (pr2 product-equivalence-relation)) = symmetric-product-Relation-Prop
pr2 (pr2 (pr2 product-equivalence-relation)) =
transitive-product-Relation-Prop
```