# Split surjective maps
```agda
module foundation.split-surjective-maps where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.injective-maps
open import foundation-core.retractions
open import foundation-core.sections
open import foundation-core.type-theoretic-principle-of-choice
```
</details>
## Idea
A map `f : A → B` is split surjective if we can construct for every `b : B` an
element in the fiber of `b`, meaning an element `a : A` equipped with an
identification `f a = b`.
## Warning
Note that split-surjectiveness is the Curry-Howard interpretation of
surjectiveness. However, this is not a property, and the split surjective maps
don't fit in a factorization system along with the injective maps.
## Definition
### Split surjective maps
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-split-surjective : (A → B) → UU (l1 ⊔ l2)
is-split-surjective f = (b : B) → fiber f b
split-surjection : UU (l1 ⊔ l2)
split-surjection = Σ (A → B) is-split-surjective
map-split-surjection : split-surjection → (A → B)
map-split-surjection = pr1
is-split-surjective-split-surjection :
(f : split-surjection) → is-split-surjective (map-split-surjection f)
is-split-surjective-split-surjection = pr2
```
## Properties
### Split surjections are equivalent to maps equipped with a section
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B)
where
section-is-split-surjective : is-split-surjective f → section f
pr1 (section-is-split-surjective s) = pr1 ∘ s
pr2 (section-is-split-surjective s) = pr2 ∘ s
is-split-surjective-section : section f → is-split-surjective f
pr1 (is-split-surjective-section s b) = pr1 s b
pr2 (is-split-surjective-section s b) = pr2 s b
equiv-section-is-split-surjective : is-split-surjective f ≃ section f
equiv-section-is-split-surjective = distributive-Π-Σ
equiv-is-split-surjective-section : section f ≃ is-split-surjective f
equiv-is-split-surjective-section = inv-distributive-Π-Σ
```
### A map is an equivalence if and only if it is injective and split surjective
```agda
module _
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y)
where
retraction-is-split-surjective-is-injective :
is-injective f → is-split-surjective f → retraction f
pr1 (retraction-is-split-surjective-is-injective l s) = pr1 ∘ s
pr2 (retraction-is-split-surjective-is-injective l s) = l ∘ (pr2 ∘ (s ∘ f))
is-equiv-is-split-surjective-is-injective :
is-injective f → is-split-surjective f → is-equiv f
pr1 (is-equiv-is-split-surjective-is-injective l s) =
section-is-split-surjective f s
pr2 (is-equiv-is-split-surjective-is-injective l s) =
retraction-is-split-surjective-is-injective l s
is-split-surjective-is-equiv : is-equiv f → is-split-surjective f
is-split-surjective-is-equiv = is-split-surjective-section f ∘ pr1
is-split-surjective-is-injective-is-equiv :
is-equiv f → is-injective f × is-split-surjective f
pr1 (is-split-surjective-is-injective-is-equiv is-equiv-f) =
is-injective-is-equiv is-equiv-f
pr2 (is-split-surjective-is-injective-is-equiv is-equiv-f) =
is-split-surjective-is-equiv is-equiv-f
```