# Structured type duality
```agda
module foundation.structured-type-duality where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.structure
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.type-duality
open import foundation.univalence
open import foundation.universe-levels
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.type-theoretic-principle-of-choice
```
</details>
## Theorem
### Structured type duality
```agda
Slice-structure :
{l1 l2 : Level} (l : Level) (P : UU (l1 ⊔ l) → UU l2) (B : UU l1) →
UU (l1 ⊔ l2 ⊔ lsuc l)
Slice-structure l P B = Σ (UU l) (λ A → hom-structure P A B)
equiv-Fiber-structure :
{l1 l2 : Level} (l : Level) (P : UU (l1 ⊔ l) → UU l2) (B : UU l1) →
Slice-structure (l1 ⊔ l) P B ≃ fam-structure P B
equiv-Fiber-structure {l1} {l3} l P B =
( ( inv-distributive-Π-Σ) ∘e
( equiv-Σ
( λ C → (b : B) → P (C b))
( equiv-Fiber l B)
( λ f → equiv-Π-equiv-family (λ b → id-equiv)))) ∘e
( inv-associative-Σ
( UU (l1 ⊔ l))
( λ A → A → B)
( λ f → structure-map P (pr2 f)))
```
```agda
equiv-fixed-Slice-structure :
{l : Level} (P : UU l → UU l) (X : UU l) (A : UU l) →
( hom-structure P X A) ≃
( Σ (A → Σ (UU l) (λ Z → P (Z))) ( λ Y → X ≃ (Σ A (pr1 ∘ Y))))
equiv-fixed-Slice-structure {l} P X A =
( ( equiv-Σ
( λ Y → X ≃ Σ A (pr1 ∘ Y))
( equiv-Fiber-structure l P A)
( λ s →
inv-equiv
( equiv-postcomp-equiv (equiv-total-fiber (pr1 (pr2 s))) X))) ∘e
( ( equiv-right-swap-Σ) ∘e
( ( inv-left-unit-law-Σ-is-contr
( is-torsorial-equiv X)
( X , id-equiv)))))
```