# The uniqueness of set quotients
```agda
module foundation.uniqueness-set-quotients where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.reflecting-maps-equivalence-relations
open import foundation.sets
open import foundation.subtype-identity-principle
open import foundation.universal-property-equivalences
open import foundation.universal-property-set-quotients
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition
open import foundation-core.contractible-types
open import foundation-core.equivalence-relations
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.injective-maps
open import foundation-core.precomposition-functions
```
</details>
## Idea
The universal property of set quotients implies that set quotients are uniquely
unique.
## Properties
### Uniqueness of set quotients
```agda
precomp-comp-Set-Quotient :
{l1 l2 l3 l4 l5 : Level} {A : UU l1} (R : equivalence-relation l2 A)
(B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B))
(C : Set l4) (g : hom-Set B C)
(D : Set l5) (h : hom-Set C D) →
( precomp-Set-Quotient R B f D (h ∘ g)) =
( precomp-Set-Quotient R C (precomp-Set-Quotient R B f C g) D h)
precomp-comp-Set-Quotient R B f C g D h =
eq-htpy-reflecting-map-equivalence-relation R D
( precomp-Set-Quotient R B f D (h ∘ g))
( precomp-Set-Quotient R C (precomp-Set-Quotient R B f C g) D h)
( refl-htpy)
module _
{l1 l2 l3 l4 : Level} {A : UU l1} (R : equivalence-relation l2 A)
(B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B))
(C : Set l4) (g : reflecting-map-equivalence-relation R (type-Set C))
{h : type-Set B → type-Set C}
(H :
(h ∘ map-reflecting-map-equivalence-relation R f) ~
map-reflecting-map-equivalence-relation R g)
where
map-inv-is-equiv-is-set-quotient-is-set-quotient :
is-set-quotient R B f →
is-set-quotient R C g →
type-Set C → type-Set B
map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug =
map-universal-property-set-quotient-is-set-quotient R C g Ug B f
is-section-map-inv-is-equiv-is-set-quotient-is-set-quotient :
( Uf : is-set-quotient R B f) →
( Ug : is-set-quotient R C g) →
( h ∘ map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug) ~ id
is-section-map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug =
htpy-eq
( is-injective-is-equiv
( Ug C)
{ h ∘ map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug}
{ id}
( ( precomp-comp-Set-Quotient R C g B
( map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug)
( C)
( h)) ∙
( ( ap
( λ t → precomp-Set-Quotient R B t C h)
( eq-htpy-reflecting-map-equivalence-relation R B
( precomp-Set-Quotient R C g B
( map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug))
( f)
( triangle-universal-property-set-quotient-is-set-quotient
R C g Ug B f))) ∙
( ( eq-htpy-reflecting-map-equivalence-relation R C
( precomp-Set-Quotient R B f C h) g H) ∙
( inv (precomp-id-Set-Quotient R C g))))))
is-retraction-map-inv-is-equiv-is-set-quotient-is-set-quotient :
( Uf : is-set-quotient R B f) →
( Ug : is-set-quotient R C g) →
( map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug ∘ h) ~ id
is-retraction-map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug =
htpy-eq
( is-injective-is-equiv
( Uf B)
{ map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug ∘ h}
{ id}
( ( precomp-comp-Set-Quotient R B f C h B
( map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug)) ∙
( ( ap
( λ t →
precomp-Set-Quotient R C t B
( map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug))
( eq-htpy-reflecting-map-equivalence-relation R C
( precomp-Set-Quotient R B f C h)
( g)
( H))) ∙
( ( eq-htpy-reflecting-map-equivalence-relation R B
( precomp-Set-Quotient R C g B
( map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug))
( f)
( triangle-universal-property-set-quotient-is-set-quotient
R C g Ug B f)) ∙
( inv (precomp-id-Set-Quotient R B f))))))
is-equiv-is-set-quotient-is-set-quotient :
is-set-quotient R B f →
is-set-quotient R C g →
is-equiv h
is-equiv-is-set-quotient-is-set-quotient Uf Ug =
is-equiv-is-invertible
( map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug)
( is-section-map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug)
( is-retraction-map-inv-is-equiv-is-set-quotient-is-set-quotient Uf Ug)
is-set-quotient-is-set-quotient-is-equiv :
is-equiv h → is-set-quotient R B f → is-set-quotient R C g
is-set-quotient-is-set-quotient-is-equiv E Uf {l} X =
is-equiv-left-map-triangle
( precomp-Set-Quotient R C g X)
( precomp-Set-Quotient R B f X)
( precomp h (type-Set X))
( λ k →
eq-htpy-reflecting-map-equivalence-relation R X
( precomp-Set-Quotient R C g X k)
( precomp-Set-Quotient R B f X (k ∘ h))
( inv-htpy (k ·l H)))
( is-equiv-precomp-is-equiv h E (type-Set X))
( Uf X)
is-set-quotient-is-equiv-is-set-quotient :
is-set-quotient R C g → is-equiv h → is-set-quotient R B f
is-set-quotient-is-equiv-is-set-quotient Ug E {l} X =
is-equiv-right-map-triangle
( precomp-Set-Quotient R C g X)
( precomp-Set-Quotient R B f X)
( precomp h (type-Set X))
( λ k →
eq-htpy-reflecting-map-equivalence-relation R X
( precomp-Set-Quotient R C g X k)
( precomp-Set-Quotient R B f X (k ∘ h))
( inv-htpy (k ·l H)))
( Ug X)
( is-equiv-precomp-is-equiv h E (type-Set X))
module _
{l1 l2 l3 l4 : Level} {A : UU l1} (R : equivalence-relation l2 A)
(B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B))
(Uf : is-set-quotient R B f)
(C : Set l4) (g : reflecting-map-equivalence-relation R (type-Set C))
(Ug : is-set-quotient R C g)
where
uniqueness-set-quotient :
is-contr
( Σ ( type-Set B ≃ type-Set C)
( λ e →
( map-equiv e ∘ map-reflecting-map-equivalence-relation R f) ~
( map-reflecting-map-equivalence-relation R g)))
uniqueness-set-quotient =
is-torsorial-Eq-subtype
( universal-property-set-quotient-is-set-quotient R B f Uf C g)
( is-property-is-equiv)
( map-universal-property-set-quotient-is-set-quotient R B f Uf C g)
( triangle-universal-property-set-quotient-is-set-quotient R B f Uf C g)
( is-equiv-is-set-quotient-is-set-quotient R B f C g
( triangle-universal-property-set-quotient-is-set-quotient
R B f Uf C g)
( Uf)
( Ug))
equiv-uniqueness-set-quotient : type-Set B ≃ type-Set C
equiv-uniqueness-set-quotient =
pr1 (center uniqueness-set-quotient)
map-equiv-uniqueness-set-quotient : type-Set B → type-Set C
map-equiv-uniqueness-set-quotient = map-equiv equiv-uniqueness-set-quotient
triangle-uniqueness-set-quotient :
( map-equiv-uniqueness-set-quotient ∘
map-reflecting-map-equivalence-relation R f) ~
( map-reflecting-map-equivalence-relation R g)
triangle-uniqueness-set-quotient =
pr2 (center uniqueness-set-quotient)
```