# Lower bounds in large posets
```agda
module order-theory.lower-bounds-large-posets where
```
<details><summary>Imports</summary>
```agda
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.logical-equivalences
open import foundation.universe-levels
open import order-theory.dependent-products-large-posets
open import order-theory.large-posets
```
</details>
## Idea
A **binary lower bound** of two elements `a` and `b` in a large poset `P` is an
element `x` such that both `x ≤ a` and `x ≤ b` hold. Similarly, a **lower
bound** of a family of elements `a : I → P` in a large poset `P` is an element
`x` such that `x ≤ a i` holds for every `i : I`.
## Definitions
### The predicate that an element of a large poset is a lower bound of two elements
```agda
module _
{α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β)
{l1 l2 : Level} (a : type-Large-Poset P l1) (b : type-Large-Poset P l2)
where
is-binary-lower-bound-Large-Poset :
{l3 : Level} → type-Large-Poset P l3 → UU (β l3 l1 ⊔ β l3 l2)
is-binary-lower-bound-Large-Poset x =
leq-Large-Poset P x a × leq-Large-Poset P x b
```
## Properties
### An element of a dependent product of large posets is a binary lower bound of two elements if and only if it is a pointwise binary lower bound
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
{l : Level} {I : UU l} (P : I → Large-Poset α β)
{l1 l2 : Level} (x : type-Π-Large-Poset P l1) (y : type-Π-Large-Poset P l2)
where
is-binary-lower-bound-Π-Large-Poset :
{l3 : Level} (z : type-Π-Large-Poset P l3) →
((i : I) → is-binary-lower-bound-Large-Poset (P i) (x i) (y i) (z i)) →
is-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y z
pr1 (is-binary-lower-bound-Π-Large-Poset z H) i = pr1 (H i)
pr2 (is-binary-lower-bound-Π-Large-Poset z H) i = pr2 (H i)
is-binary-lower-bound-is-binary-lower-bound-Π-Large-Poset :
{l3 : Level} (z : type-Π-Large-Poset P l3) →
is-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y z →
(i : I) → is-binary-lower-bound-Large-Poset (P i) (x i) (y i) (z i)
pr1 (is-binary-lower-bound-is-binary-lower-bound-Π-Large-Poset z H i) =
pr1 H i
pr2 (is-binary-lower-bound-is-binary-lower-bound-Π-Large-Poset z H i) =
pr2 H i
logical-equivalence-is-binary-lower-bound-Π-Large-Poset :
{l3 : Level} (z : type-Π-Large-Poset P l3) →
((i : I) → is-binary-lower-bound-Large-Poset (P i) (x i) (y i) (z i)) ↔
is-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y z
pr1 (logical-equivalence-is-binary-lower-bound-Π-Large-Poset z) =
is-binary-lower-bound-Π-Large-Poset z
pr2 (logical-equivalence-is-binary-lower-bound-Π-Large-Poset z) =
is-binary-lower-bound-is-binary-lower-bound-Π-Large-Poset z
```