# Upper bounds in large posets
```agda
module order-theory.upper-bounds-large-posets where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.logical-equivalences
open import foundation.propositions
open import foundation.universe-levels
open import order-theory.dependent-products-large-posets
open import order-theory.large-posets
```
</details>
## Idea
A **binary upper bound** of two elements `a` and `b` of a large poset `P` is an
element `x` of `P` such that `a ≤ x` and `b ≤ x` both hold. Similarly, an
**upper bound** of a family `a : I → P` of elements of `P` is an element `x` of
`P` such that the inequality `(a i) ≤ x` holds for every `i : I`.
## Definitions
### The predicate of being an upper bound of a family of elements
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
(P : Large-Poset α β)
{l1 l2 : Level} {I : UU l1} (x : I → type-Large-Poset P l2)
where
is-upper-bound-prop-family-of-elements-Large-Poset :
{l3 : Level} (y : type-Large-Poset P l3) → Prop (β l2 l3 ⊔ l1)
is-upper-bound-prop-family-of-elements-Large-Poset y =
Π-Prop I (λ i → leq-prop-Large-Poset P (x i) y)
is-upper-bound-family-of-elements-Large-Poset :
{l3 : Level} (y : type-Large-Poset P l3) → UU (β l2 l3 ⊔ l1)
is-upper-bound-family-of-elements-Large-Poset y =
type-Prop (is-upper-bound-prop-family-of-elements-Large-Poset y)
is-prop-is-upper-bound-family-of-elements-Large-Poset :
{l3 : Level} (y : type-Large-Poset P l3) →
is-prop (is-upper-bound-family-of-elements-Large-Poset y)
is-prop-is-upper-bound-family-of-elements-Large-Poset y =
is-prop-type-Prop (is-upper-bound-prop-family-of-elements-Large-Poset y)
```
## Properties
### An element `x : Π-Large-Poset P` of a dependent product of large posets `P i` indexed by `i : I` is an upper bound of a family `a : J → Π-Large-Poset P` if and only if `x i` is an upper bound of the family `(j ↦ a j i) : J → P i` of elements of `P i`
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
{l1 : Level} {I : UU l1} (P : I → Large-Poset α β)
{l2 l3 : Level} {J : UU l2} (a : J → type-Π-Large-Poset P l3)
{l4 : Level} (x : type-Π-Large-Poset P l4)
where
is-upper-bound-family-of-elements-Π-Large-Poset :
( (i : I) →
is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i)) →
is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x
is-upper-bound-family-of-elements-Π-Large-Poset H j i = H i j
map-inv-is-upper-bound-family-of-elements-Π-Large-Poset :
is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x →
(i : I) →
is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i)
map-inv-is-upper-bound-family-of-elements-Π-Large-Poset H i j = H j i
logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset :
( (i : I) →
is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i)) ↔
is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x
pr1 logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset =
is-upper-bound-family-of-elements-Π-Large-Poset
pr2 logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset =
map-inv-is-upper-bound-family-of-elements-Π-Large-Poset
```