# Σ-closed reflective subuniverses
```agda
module orthogonal-factorization-systems.sigma-closed-reflective-subuniverses where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.sigma-closed-subuniverses
open import foundation.universe-levels
open import orthogonal-factorization-systems.reflective-subuniverses
```
</details>
## Idea
A
[reflective subuniverse](orthogonal-factorization-systems.reflective-subuniverses.md)
is **Σ-closed** if it is closed under the formation of
[Σ-types](foundation.dependent-pair-types.md).
## Definition
```agda
is-closed-under-Σ-reflective-subuniverse :
{l lP : Level} → reflective-subuniverse l lP → UU (lsuc l ⊔ lP)
is-closed-under-Σ-reflective-subuniverse (P , _) =
is-closed-under-Σ-subuniverse P
closed-under-Σ-reflective-subuniverse :
(l lP : Level) → UU (lsuc l ⊔ lsuc lP)
closed-under-Σ-reflective-subuniverse l lP =
Σ ( reflective-subuniverse l lP)
( is-closed-under-Σ-reflective-subuniverse)
```
## See also
The equivalent notions of
- [Higher modalities](orthogonal-factorization-systems.higher-modalities.md)
- [Uniquely eliminating modalities](orthogonal-factorization-systems.uniquely-eliminating-modalities.md)
- [Stable orthogonal factorization systems](orthogonal-factorization-systems.stable-orthogonal-factorization-systems.md)
- [Σ-closed reflective modalities](orthogonal-factorization-systems.sigma-closed-reflective-modalities.md)
## References
{{#bibliography}} {{#reference RSS20}}