# The elementhood relation on W-types
```agda
module trees.elementhood-relation-w-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.identity-types
open import foundation.transport-along-identifications
open import foundation.universe-levels
open import trees.elementhood-relation-coalgebras-polynomial-endofunctors
open import trees.w-types
```
</details>
## Idea
We say that a tree `S` is an **element** of a tree `tree-𝕎 x α` if `S` can be
equipped with an element `y : B x` such that `α y = S`.
## Definition
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
infix 6 _∈-𝕎_ _∉-𝕎_
_∈-𝕎_ : 𝕎 A B → 𝕎 A B → UU (l1 ⊔ l2)
x ∈-𝕎 y = x ∈ y in-coalgebra 𝕎-Coalg A B
_∉-𝕎_ : 𝕎 A B → 𝕎 A B → UU (l1 ⊔ l2)
x ∉-𝕎 y = is-empty (x ∈-𝕎 y)
```
## Properties
```agda
irreflexive-∈-𝕎 :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} (x : 𝕎 A B) → x ∉-𝕎 x
irreflexive-∈-𝕎 {A = A} {B = B} (tree-𝕎 x α) (pair y p) =
irreflexive-∈-𝕎 (α y) (tr (λ z → (α y) ∈-𝕎 z) (inv p) (pair y refl))
```