# Multisets
```agda
module trees.multisets where
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.function-types
open import foundation.universe-levels
open import trees.elementhood-relation-w-types
open import trees.w-types
```
</details>
## Idea
The type of **multisets** of universe level `l` is the W-type of the universal
family over the universe `UU l`.
## Definitions
### The type of small multisets
```agda
š : (l : Level) ā UU (lsuc l)
š l = š (UU l) (Ī» X ā X)
```
### The large type of all multisets
```agda
data
Large-š : UUĻ
where
tree-Large-š : {l : Level} (X : UU l) ā (X ā Large-š) ā Large-š
```
### The elementhood relation on multisets
```agda
infix 6 _ā-š_ _ā-š_
_ā-š_ : {l : Level} ā š l ā š l ā UU (lsuc l)
X ā-š Y = X ā-š Y
_ā-š_ : {l : Level} ā š l ā š l ā UU (lsuc l)
X ā-š Y = is-empty (X ā-š Y)
```
### Comprehension for multisets
```agda
comprehension-š :
{l : Level} (X : š l) (P : shape-š X ā UU l) ā š l
comprehension-š X P =
tree-š (Ī£ (shape-š X) P) (component-š X ā pr1)
```