# Decidable dependent function types
```agda
module univalent-combinatorics.decidable-dependent-function-types where
open import elementary-number-theory.decidable-dependent-function-types public
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.coproduct-types
open import foundation.decidable-propositions
open import foundation.decidable-types
open import foundation.empty-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels
open import univalent-combinatorics.counting
open import univalent-combinatorics.finite-choice
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.standard-finite-types
```
</details>
## Idea
We describe conditions under which dependent products are decidable.
```agda
is-decidable-Π-Fin :
{l1 : Level} (k : ℕ) {B : Fin k → UU l1} →
((x : Fin k) → is-decidable (B x)) → is-decidable ((x : Fin k) → B x)
is-decidable-Π-Fin zero-ℕ {B} d = inl ind-empty
is-decidable-Π-Fin (succ-ℕ k) {B} d =
is-decidable-Π-Maybe
( is-decidable-Π-Fin k (λ x → d (inl x)))
( d (inr star))
```
```agda
is-decidable-Π-count :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
count A → ((x : A) → is-decidable (B x)) → is-decidable ((x : A) → B x)
is-decidable-Π-count e d =
is-decidable-Π-equiv
( equiv-count e)
( λ x → id-equiv)
( is-decidable-Π-Fin
( number-of-elements-count e)
( λ x → d (map-equiv-count e x)))
is-decidable-Π-is-finite :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-finite A →
((x : A) → is-decidable (B x)) → is-decidable ((x : A) → B x)
is-decidable-Π-is-finite {l1} {l2} {A} {B} H d =
is-decidable-iff
( map-Π (λ x → elim-trunc-Prop-is-decidable (d x)))
( map-Π (λ x → unit-trunc-Prop))
( is-decidable-iff
( α)
( finite-choice H)
( apply-universal-property-trunc-Prop H
( is-decidable-Prop (trunc-Prop ((x : A) → B x)))
( λ e →
is-decidable-iff
( finite-choice H)
( α)
( is-decidable-Π-count e
( λ x →
is-decidable-iff
( unit-trunc-Prop)
( elim-trunc-Prop-is-decidable (d x))
( d x))))))
where
α : type-trunc-Prop ((x : A) → B x) → (x : A) → type-trunc-Prop (B x)
α = map-universal-property-trunc-Prop
( Π-Prop A (λ x → trunc-Prop (B x)))
( λ (f : (x : A) → B x) (x : A) → unit-trunc-Prop (f x))
```