# Decidable propositions
```agda
module univalent-combinatorics.decidable-propositions where
open import foundation.decidable-propositions public
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.coproduct-types
open import foundation.decidable-equality
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels
open import univalent-combinatorics.counting
open import univalent-combinatorics.standard-finite-types
```
</details>
### Propositions have countings if and only if they are decidable
```agda
is-decidable-count :
{l : Level} {X : UU l} → count X → is-decidable X
is-decidable-count (pair zero-ℕ e) =
inr (is-empty-is-zero-number-of-elements-count (pair zero-ℕ e) refl)
is-decidable-count (pair (succ-ℕ k) e) =
inl (map-equiv e (zero-Fin k))
count-is-decidable-is-prop :
{l : Level} {A : UU l} → is-prop A → is-decidable A → count A
count-is-decidable-is-prop H (inl x) =
count-is-contr (is-proof-irrelevant-is-prop H x)
count-is-decidable-is-prop H (inr f) = count-is-empty f
count-Decidable-Prop :
{l1 : Level} (P : Prop l1) →
is-decidable (type-Prop P) → count (type-Prop P)
count-Decidable-Prop P (inl p) =
count-is-contr (is-proof-irrelevant-is-prop (is-prop-type-Prop P) p)
count-Decidable-Prop P (inr f) = count-is-empty f
```
### We can count the elements of an identity type of a type that has decidable equality
```agda
cases-count-eq :
{l : Level} {X : UU l} (d : has-decidable-equality X) {x y : X}
(e : is-decidable (Id x y)) → count (Id x y)
cases-count-eq d {x} {y} (inl p) =
count-is-contr
( is-proof-irrelevant-is-prop (is-set-has-decidable-equality d x y) p)
cases-count-eq d (inr f) =
count-is-empty f
count-eq :
{l : Level} {X : UU l} → has-decidable-equality X → (x y : X) → count (Id x y)
count-eq d x y = cases-count-eq d (d x y)
cases-number-of-elements-count-eq' :
{l : Level} {X : UU l} {x y : X} →
is-decidable (Id x y) → ℕ
cases-number-of-elements-count-eq' (inl p) = 1
cases-number-of-elements-count-eq' (inr f) = 0
number-of-elements-count-eq' :
{l : Level} {X : UU l} (d : has-decidable-equality X) (x y : X) → ℕ
number-of-elements-count-eq' d x y =
cases-number-of-elements-count-eq' (d x y)
cases-number-of-elements-count-eq :
{l : Level} {X : UU l} (d : has-decidable-equality X) {x y : X}
(e : is-decidable (Id x y)) →
Id
( number-of-elements-count (cases-count-eq d e))
( cases-number-of-elements-count-eq' e)
cases-number-of-elements-count-eq d (inl p) = refl
cases-number-of-elements-count-eq d (inr f) = refl
abstract
number-of-elements-count-eq :
{l : Level} {X : UU l} (d : has-decidable-equality X) (x y : X) →
Id ( number-of-elements-count (count-eq d x y))
( number-of-elements-count-eq' d x y)
number-of-elements-count-eq d x y =
cases-number-of-elements-count-eq d (d x y)
```