# Counting the elements of dependent function types
```agda
module univalent-combinatorics.dependent-function-types where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.dependent-universal-property-equivalences
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.propositional-truncations
open import foundation.unit-type
open import foundation.universal-property-coproduct-types
open import foundation.universal-property-empty-type
open import foundation.universal-property-unit-type
open import foundation.universe-levels
open import univalent-combinatorics.cartesian-product-types
open import univalent-combinatorics.counting
open import univalent-combinatorics.finite-choice
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.standard-finite-types
```
</details>
## Idea
Dependent products of finite types indexed by a finite type are finite.
## Properties
### Counting dependent products indexed by standard finite types
If the elements of `A` can be counted and if for each `x : A` the elements of
`B x` can be counted, then the elements of `Π A B` can be counted.
```agda
count-Π-Fin :
{l1 : Level} (k : ℕ) {B : Fin k → UU l1} →
((x : Fin k) → count (B x)) → count ((x : Fin k) → B x)
count-Π-Fin {l1} zero-ℕ {B} e =
count-is-contr (dependent-universal-property-empty' B)
count-Π-Fin {l1} (succ-ℕ k) {B} e =
count-equiv'
( equiv-dependent-universal-property-coproduct B)
( count-product
( count-Π-Fin k (λ x → e (inl x)))
( count-equiv'
( equiv-dependent-universal-property-unit (B ∘ inr))
( e (inr star))))
```
### Counting on dependent function types
```agda
count-Π :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
count A → ((x : A) → count (B x)) → count ((x : A) → B x)
count-Π {l1} {l2} {A} {B} e f =
count-equiv'
( equiv-precomp-Π (equiv-count e) B)
( count-Π-Fin (number-of-elements-count e) (λ x → f (map-equiv-count e x)))
```
### Finiteness of dependent function types
```agda
abstract
is-finite-Π :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
is-finite A → ((x : A) → is-finite (B x)) → is-finite ((x : A) → B x)
is-finite-Π {l1} {l2} {A} {B} f g =
apply-universal-property-trunc-Prop f
( is-finite-Prop ((x : A) → B x))
( λ e →
apply-universal-property-trunc-Prop
( finite-choice f g)
( is-finite-Prop ((x : A) → B x))
( λ h → unit-trunc-Prop (count-Π e h)))
is-finite-Π' :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
is-finite A → ((x : A) → is-finite (B x)) → is-finite ({x : A} → B x)
is-finite-Π' {l1} {l2} {A} {B} f g =
is-finite-equiv
(( pair
( λ f {x} → f x)
( is-equiv-is-invertible
( λ g x → g {x})
( refl-htpy)
( refl-htpy))))
(is-finite-Π f g)
Π-𝔽 : {l1 l2 : Level} (A : 𝔽 l1) (B : type-𝔽 A → 𝔽 l2) → 𝔽 (l1 ⊔ l2)
pr1 (Π-𝔽 A B) = (x : type-𝔽 A) → type-𝔽 (B x)
pr2 (Π-𝔽 A B) = is-finite-Π (is-finite-type-𝔽 A) (λ x → is-finite-type-𝔽 (B x))
Π-𝔽' : {l1 l2 : Level} (A : 𝔽 l1) (B : type-𝔽 A → 𝔽 l2) → 𝔽 (l1 ⊔ l2)
pr1 (Π-𝔽' A B) = {x : type-𝔽 A} → type-𝔽 (B x)
pr2 (Π-𝔽' A B) =
is-finite-Π' (is-finite-type-𝔽 A) (λ x → is-finite-type-𝔽 (B x))
```