# Equivalences between finite types
```agda
module univalent-combinatorics.equivalences where
open import foundation.equivalences public
```
<details><summary>Imports</summary>
```agda
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import univalent-combinatorics.embeddings
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.surjective-maps
```
</details>
## Properties
### For a map between finite types, being an equivalence is decidable
```agda
is-decidable-is-equiv-is-finite :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-finite A → is-finite B → is-decidable (is-equiv f)
is-decidable-is-equiv-is-finite f HA HB =
is-decidable-iff
( λ p → is-equiv-is-emb-is-surjective (pr1 p) (pr2 p))
( λ K → pair (is-surjective-is-equiv K) (is-emb-is-equiv K))
( is-decidable-product
( is-decidable-is-surjective-is-finite f HA HB)
( is-decidable-is-emb-is-finite f HA HB))
```