# Natural isomorphisms between functors between precategories
```agda
module category-theory.natural-isomorphisms-functors-precategories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.functors-precategories
open import category-theory.isomorphisms-in-precategories
open import category-theory.natural-isomorphisms-maps-precategories
open import category-theory.natural-transformations-functors-precategories
open import category-theory.precategories
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
open import foundation.universe-levels
```
</details>
## Idea
A **natural isomorphism** `γ` from
[functor](category-theory.functors-precategories.md) `F : C → D` to `G : C → D`
is a
[natural transformation](category-theory.natural-transformations-functors-precategories.md)
from `F` to `G` such that the morphism `γ F : hom (F x) (G x)` is an
[isomorphism](category-theory.isomorphisms-in-precategories.md), for every
object `x` in `C`.
## Definition
### Families of isomorphisms between functors
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
where
iso-family-functor-Precategory : UU (l1 ⊔ l4)
iso-family-functor-Precategory =
iso-family-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
```
### The predicate of being an isomorphism in a precategory
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
where
is-natural-isomorphism-Precategory :
natural-transformation-Precategory C D F G → UU (l1 ⊔ l4)
is-natural-isomorphism-Precategory =
is-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
(f : natural-transformation-Precategory C D F G)
where
hom-inv-family-is-natural-isomorphism-Precategory :
is-natural-isomorphism-Precategory C D F G f →
hom-family-functor-Precategory C D G F
hom-inv-family-is-natural-isomorphism-Precategory =
hom-inv-family-is-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
is-section-hom-inv-family-is-natural-isomorphism-Precategory :
(is-iso-f : is-natural-isomorphism-Precategory C D F G f) →
(x : obj-Precategory C) →
comp-hom-Precategory D
( hom-family-natural-transformation-Precategory C D F G f x)
( hom-inv-is-iso-Precategory D (is-iso-f x)) =
id-hom-Precategory D
is-section-hom-inv-family-is-natural-isomorphism-Precategory =
is-section-hom-inv-family-is-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
is-retraction-hom-inv-family-is-natural-isomorphism-Precategory :
(is-iso-f : is-natural-isomorphism-Precategory C D F G f) →
(x : obj-Precategory C) →
comp-hom-Precategory D
( hom-inv-is-iso-Precategory D (is-iso-f x))
( hom-family-natural-transformation-Precategory C D F G f x) =
id-hom-Precategory D
is-retraction-hom-inv-family-is-natural-isomorphism-Precategory =
is-retraction-hom-inv-family-is-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
iso-family-is-natural-isomorphism-Precategory :
is-natural-isomorphism-Precategory C D F G f →
iso-family-functor-Precategory C D F G
iso-family-is-natural-isomorphism-Precategory =
iso-family-is-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
inv-iso-family-is-natural-isomorphism-Precategory :
is-natural-isomorphism-Precategory C D F G f →
iso-family-functor-Precategory C D G F
inv-iso-family-is-natural-isomorphism-Precategory =
inv-iso-family-is-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
```
### Natural isomorphisms in a precategory
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
where
natural-isomorphism-Precategory : UU (l1 ⊔ l2 ⊔ l4)
natural-isomorphism-Precategory =
natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
(f : natural-isomorphism-Precategory C D F G)
where
natural-transformation-natural-isomorphism-Precategory :
natural-transformation-Precategory C D F G
natural-transformation-natural-isomorphism-Precategory =
natural-transformation-map-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
hom-family-natural-isomorphism-Precategory :
hom-family-functor-Precategory C D F G
hom-family-natural-isomorphism-Precategory =
hom-family-natural-transformation-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory)
coherence-square-natural-isomorphism-Precategory :
is-natural-transformation-Precategory C D F G
( hom-family-natural-transformation-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory))
coherence-square-natural-isomorphism-Precategory =
naturality-natural-transformation-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory)
is-natural-isomorphism-natural-isomorphism-Precategory :
is-natural-isomorphism-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory)
is-natural-isomorphism-natural-isomorphism-Precategory = pr2 f
hom-inv-family-natural-isomorphism-Precategory :
hom-family-functor-Precategory C D G F
hom-inv-family-natural-isomorphism-Precategory =
hom-inv-family-is-natural-isomorphism-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory)
( is-natural-isomorphism-natural-isomorphism-Precategory)
is-section-hom-inv-family-natural-isomorphism-Precategory :
(x : obj-Precategory C) →
comp-hom-Precategory D
( hom-family-natural-isomorphism-Precategory x)
( hom-inv-family-natural-isomorphism-Precategory x) =
id-hom-Precategory D
is-section-hom-inv-family-natural-isomorphism-Precategory =
is-section-hom-inv-family-is-natural-isomorphism-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory)
( is-natural-isomorphism-natural-isomorphism-Precategory)
is-retraction-hom-inv-family-natural-isomorphism-Precategory :
(x : obj-Precategory C) →
comp-hom-Precategory D
( hom-inv-family-natural-isomorphism-Precategory x)
( hom-family-natural-isomorphism-Precategory x) =
id-hom-Precategory D
is-retraction-hom-inv-family-natural-isomorphism-Precategory =
is-retraction-hom-inv-family-is-natural-isomorphism-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory)
( is-natural-isomorphism-natural-isomorphism-Precategory)
iso-family-natural-isomorphism-Precategory :
iso-family-functor-Precategory C D F G
iso-family-natural-isomorphism-Precategory =
iso-family-is-natural-isomorphism-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory)
( is-natural-isomorphism-natural-isomorphism-Precategory)
inv-iso-family-natural-isomorphism-Precategory :
iso-family-functor-Precategory C D G F
inv-iso-family-natural-isomorphism-Precategory =
inv-iso-family-is-natural-isomorphism-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory)
( is-natural-isomorphism-natural-isomorphism-Precategory)
```
## Examples
### The identity natural isomorphism
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
where
id-natural-isomorphism-Precategory :
(F : functor-Precategory C D) → natural-isomorphism-Precategory C D F F
id-natural-isomorphism-Precategory F =
id-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
```
### Equalities induce natural isomorphisms
An equality between functors `F` and `G` gives rise to a natural isomorphism
between them. This is because, by the J-rule, it is enough to construct a
natural isomorphism given `refl : F = F`, from `F` to itself. We take the
identity natural transformation as such an isomorphism.
```agda
natural-isomorphism-eq-Precategory :
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D) →
F = G → natural-isomorphism-Precategory C D F G
natural-isomorphism-eq-Precategory C D F .F refl =
id-natural-isomorphism-Precategory C D F
```
## Propositions
### Being a natural isomorphism is a proposition
That a natural transformation is a natural isomorphism is a proposition. This
follows from the fact that being an isomorphism is a proposition.
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
where
is-prop-is-natural-isomorphism-Precategory :
(f : natural-transformation-Precategory C D F G) →
is-prop (is-natural-isomorphism-Precategory C D F G f)
is-prop-is-natural-isomorphism-Precategory =
is-prop-is-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
is-natural-isomorphism-prop-hom-Precategory :
(f : natural-transformation-Precategory C D F G) → Prop (l1 ⊔ l4)
is-natural-isomorphism-prop-hom-Precategory =
is-natural-isomorphism-map-prop-hom-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
```
### Equality of natural isomorphisms is equality of their underlying natural transformations
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
where
extensionality-natural-isomorphism-Precategory :
(f g : natural-isomorphism-Precategory C D F G) →
(f = g) ≃
( hom-family-natural-isomorphism-Precategory C D F G f ~
hom-family-natural-isomorphism-Precategory C D F G g)
extensionality-natural-isomorphism-Precategory =
extensionality-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
eq-eq-natural-transformation-natural-isomorphism-Precategory :
(f g : natural-isomorphism-Precategory C D F G) →
( natural-transformation-natural-isomorphism-Precategory C D F G f =
natural-transformation-natural-isomorphism-Precategory C D F G g) →
f = g
eq-eq-natural-transformation-natural-isomorphism-Precategory f g =
eq-type-subtype (is-natural-isomorphism-prop-hom-Precategory C D F G)
eq-htpy-hom-family-natural-isomorphism-Precategory :
(f g : natural-isomorphism-Precategory C D F G) →
( hom-family-natural-isomorphism-Precategory C D F G f ~
hom-family-natural-isomorphism-Precategory C D F G g) →
f = g
eq-htpy-hom-family-natural-isomorphism-Precategory =
eq-htpy-hom-family-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
```
### The type of natural isomorphisms form a set
The type of natural isomorphisms between functors `F` and `G` is a
[subtype](foundation-core.subtypes.md) of the [set](foundation-core.sets.md)
`natural-transformation F G` since being an isomorphism is a proposition.
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
where
is-set-natural-isomorphism-Precategory :
is-set (natural-isomorphism-Precategory C D F G)
is-set-natural-isomorphism-Precategory =
is-set-type-subtype
( is-natural-isomorphism-prop-hom-Precategory C D F G)
( is-set-natural-transformation-Precategory C D F G)
natural-isomorphism-set-Precategory : Set (l1 ⊔ l2 ⊔ l4)
pr1 natural-isomorphism-set-Precategory =
natural-isomorphism-Precategory C D F G
pr2 natural-isomorphism-set-Precategory =
is-set-natural-isomorphism-Precategory
```
### Inverses of natural isomorphisms are natural isomorphisms
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
(f : natural-transformation-Precategory C D F G)
where
natural-transformation-inv-is-natural-isomorphism-Precategory :
is-natural-isomorphism-Precategory C D F G f →
natural-transformation-Precategory C D G F
natural-transformation-inv-is-natural-isomorphism-Precategory =
natural-transformation-map-inv-is-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
is-section-natural-transformation-inv-is-natural-isomorphism-Precategory :
(is-iso-f : is-natural-isomorphism-Precategory C D F G f) →
comp-natural-transformation-Precategory C D G F G
( f)
( natural-transformation-inv-is-natural-isomorphism-Precategory
( is-iso-f)) =
id-natural-transformation-Precategory C D G
is-section-natural-transformation-inv-is-natural-isomorphism-Precategory
is-iso-f =
eq-htpy-hom-family-natural-transformation-Precategory C D G G _ _
( is-section-hom-inv-is-iso-Precategory D ∘ is-iso-f)
is-retraction-natural-transformation-inv-is-natural-isomorphism-Precategory :
(is-iso-f : is-natural-isomorphism-Precategory C D F G f) →
comp-natural-transformation-Precategory C D F G F
( natural-transformation-inv-is-natural-isomorphism-Precategory is-iso-f)
( f) =
id-natural-transformation-Precategory C D F
is-retraction-natural-transformation-inv-is-natural-isomorphism-Precategory
is-iso-f =
eq-htpy-hom-family-natural-transformation-Precategory C D F F _ _
( is-retraction-hom-inv-is-iso-Precategory D ∘ is-iso-f)
is-natural-isomorphism-inv-is-natural-isomorphism-Precategory :
(is-iso-f : is-natural-isomorphism-Precategory C D F G f) →
is-natural-isomorphism-Precategory C D G F
( natural-transformation-inv-is-natural-isomorphism-Precategory is-iso-f)
is-natural-isomorphism-inv-is-natural-isomorphism-Precategory is-iso-f =
is-iso-inv-is-iso-Precategory D ∘ is-iso-f
```
### Inverses of natural isomorphisms
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
(f : natural-isomorphism-Precategory C D F G)
where
natural-transformation-inv-natural-isomorphism-Precategory :
natural-transformation-Precategory C D G F
natural-transformation-inv-natural-isomorphism-Precategory =
natural-transformation-inv-is-natural-isomorphism-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory C D F G f)
( is-natural-isomorphism-natural-isomorphism-Precategory C D F G f)
is-section-natural-transformation-inv-natural-isomorphism-Precategory :
( comp-natural-transformation-Precategory C D G F G
( natural-transformation-natural-isomorphism-Precategory C D F G f)
( natural-transformation-inv-natural-isomorphism-Precategory)) =
( id-natural-transformation-Precategory C D G)
is-section-natural-transformation-inv-natural-isomorphism-Precategory =
is-section-natural-transformation-inv-is-natural-isomorphism-Precategory
C D F G
( natural-transformation-natural-isomorphism-Precategory C D F G f)
( is-natural-isomorphism-natural-isomorphism-Precategory C D F G f)
is-retraction-natural-transformation-inv-natural-isomorphism-Precategory :
( comp-natural-transformation-Precategory C D F G F
( natural-transformation-inv-natural-isomorphism-Precategory)
( natural-transformation-natural-isomorphism-Precategory C D F G f)) =
( id-natural-transformation-Precategory C D F)
is-retraction-natural-transformation-inv-natural-isomorphism-Precategory =
is-retraction-natural-transformation-inv-is-natural-isomorphism-Precategory
C D F G
( natural-transformation-natural-isomorphism-Precategory C D F G f)
( is-natural-isomorphism-natural-isomorphism-Precategory C D F G f)
is-natural-isomorphism-inv-natural-isomorphism-Precategory :
is-natural-isomorphism-Precategory C D G F
( natural-transformation-inv-natural-isomorphism-Precategory)
is-natural-isomorphism-inv-natural-isomorphism-Precategory =
is-natural-isomorphism-inv-is-natural-isomorphism-Precategory C D F G
( natural-transformation-natural-isomorphism-Precategory C D F G f)
( is-natural-isomorphism-natural-isomorphism-Precategory C D F G f)
inv-natural-isomorphism-Precategory :
natural-isomorphism-Precategory C D G F
pr1 inv-natural-isomorphism-Precategory =
natural-transformation-inv-natural-isomorphism-Precategory
pr2 inv-natural-isomorphism-Precategory =
is-natural-isomorphism-inv-natural-isomorphism-Precategory
```
### Natural isomorphisms are closed under composition
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G H : functor-Precategory C D)
(g : natural-transformation-Precategory C D G H)
(f : natural-transformation-Precategory C D F G)
where
is-natural-isomorphism-comp-is-natural-isomorphism-Precategory :
is-natural-isomorphism-Precategory C D G H g →
is-natural-isomorphism-Precategory C D F G f →
is-natural-isomorphism-Precategory C D F H
( comp-natural-transformation-Precategory C D F G H g f)
is-natural-isomorphism-comp-is-natural-isomorphism-Precategory
is-iso-g is-iso-f x =
is-iso-comp-is-iso-Precategory D (is-iso-g x) (is-iso-f x)
```
### The composition operation on natural isomorphisms
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G H : functor-Precategory C D)
(g : natural-isomorphism-Precategory C D G H)
(f : natural-isomorphism-Precategory C D F G)
where
hom-comp-natural-isomorphism-Precategory :
natural-transformation-Precategory C D F H
hom-comp-natural-isomorphism-Precategory =
comp-natural-transformation-Precategory C D F G H
( natural-transformation-natural-isomorphism-Precategory C D G H g)
( natural-transformation-natural-isomorphism-Precategory C D F G f)
is-natural-isomorphism-comp-natural-isomorphism-Precategory :
is-natural-isomorphism-Precategory C D F H
( hom-comp-natural-isomorphism-Precategory)
is-natural-isomorphism-comp-natural-isomorphism-Precategory =
is-natural-isomorphism-comp-is-natural-isomorphism-Precategory C D F G H
( natural-transformation-natural-isomorphism-Precategory C D G H g)
( natural-transformation-natural-isomorphism-Precategory C D F G f)
( is-natural-isomorphism-natural-isomorphism-Precategory C D G H g)
( is-natural-isomorphism-natural-isomorphism-Precategory C D F G f)
comp-natural-isomorphism-Precategory : natural-isomorphism-Precategory C D F H
pr1 comp-natural-isomorphism-Precategory =
hom-comp-natural-isomorphism-Precategory
pr2 comp-natural-isomorphism-Precategory =
is-natural-isomorphism-comp-natural-isomorphism-Precategory
natural-transformation-inv-comp-natural-isomorphism-Precategory :
natural-transformation-Precategory C D H F
natural-transformation-inv-comp-natural-isomorphism-Precategory =
natural-transformation-inv-natural-isomorphism-Precategory C D F H
( comp-natural-isomorphism-Precategory)
is-section-inv-comp-natural-isomorphism-Precategory :
( comp-natural-transformation-Precategory C D H F H
( hom-comp-natural-isomorphism-Precategory)
( natural-transformation-inv-comp-natural-isomorphism-Precategory)) =
( id-natural-transformation-Precategory C D H)
is-section-inv-comp-natural-isomorphism-Precategory =
is-section-natural-transformation-inv-natural-isomorphism-Precategory
C D F H comp-natural-isomorphism-Precategory
is-retraction-inv-comp-natural-isomorphism-Precategory :
( comp-natural-transformation-Precategory C D F H F
( natural-transformation-inv-comp-natural-isomorphism-Precategory)
( hom-comp-natural-isomorphism-Precategory)) =
( id-natural-transformation-Precategory C D F)
is-retraction-inv-comp-natural-isomorphism-Precategory =
is-retraction-natural-transformation-inv-natural-isomorphism-Precategory
C D F H comp-natural-isomorphism-Precategory
```
### Groupoid laws of natural isomorphisms in precategories
#### Composition of natural isomorphisms satisfies the unit laws
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
(f : natural-isomorphism-Precategory C D F G)
where
left-unit-law-comp-natural-isomorphism-Precategory :
comp-natural-isomorphism-Precategory C D F G G
( id-natural-isomorphism-Precategory C D G)
( f) =
f
left-unit-law-comp-natural-isomorphism-Precategory =
left-unit-law-comp-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
right-unit-law-comp-natural-isomorphism-Precategory :
comp-natural-isomorphism-Precategory C D F F G f
( id-natural-isomorphism-Precategory C D F) =
f
right-unit-law-comp-natural-isomorphism-Precategory =
right-unit-law-comp-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
```
#### Composition of natural isomorphisms is associative
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G H I : functor-Precategory C D)
(f : natural-isomorphism-Precategory C D F G)
(g : natural-isomorphism-Precategory C D G H)
(h : natural-isomorphism-Precategory C D H I)
where
associative-comp-natural-isomorphism-Precategory :
( comp-natural-isomorphism-Precategory C D F G I
( comp-natural-isomorphism-Precategory C D G H I h g)
( f)) =
( comp-natural-isomorphism-Precategory C D F H I h
( comp-natural-isomorphism-Precategory C D F G H g f))
associative-comp-natural-isomorphism-Precategory =
associative-comp-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( map-functor-Precategory C D H)
( map-functor-Precategory C D I)
( f)
( g)
( h)
```
#### Composition of natural isomorphisms satisfies inverse laws
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
(f : natural-isomorphism-Precategory C D F G)
where
left-inverse-law-comp-natural-isomorphism-Precategory :
( comp-natural-isomorphism-Precategory C D F G F
( inv-natural-isomorphism-Precategory C D F G f)
( f)) =
( id-natural-isomorphism-Precategory C D F)
left-inverse-law-comp-natural-isomorphism-Precategory =
left-inverse-law-comp-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
right-inverse-law-comp-natural-isomorphism-Precategory :
( comp-natural-isomorphism-Precategory C D G F G
( f)
( inv-natural-isomorphism-Precategory C D F G f)) =
( id-natural-isomorphism-Precategory C D G)
right-inverse-law-comp-natural-isomorphism-Precategory =
right-inverse-law-comp-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
( f)
```
### When the type of natural transformations is a proposition, the type of natural isomorphisms is a proposition
The type of natural isomorphisms between functors `F` and `G` is a subtype of
`natural-transformation F G`, so when this type is a proposition, then the type
of natural isomorphisms from `F` to `G` form a proposition.
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G : functor-Precategory C D)
where
is-prop-natural-isomorphism-Precategory :
is-prop (natural-transformation-Precategory C D F G) →
is-prop (natural-isomorphism-Precategory C D F G)
is-prop-natural-isomorphism-Precategory =
is-prop-natural-isomorphism-map-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
natural-isomorphism-prop-Precategory :
is-prop (natural-transformation-Precategory C D F G) → Prop (l1 ⊔ l2 ⊔ l4)
natural-isomorphism-prop-Precategory =
natural-isomorphism-map-prop-Precategory C D
( map-functor-Precategory C D F)
( map-functor-Precategory C D G)
```
### Functoriality of `natural-isomorphism-eq`
```agda
module _
{l1 l2 l3 l4 : Level}
(C : Precategory l1 l2)
(D : Precategory l3 l4)
(F G H : functor-Precategory C D)
where
preserves-concat-natural-isomorphism-eq-Precategory :
(p : F = G) (q : G = H) →
natural-isomorphism-eq-Precategory C D F H (p ∙ q) =
comp-natural-isomorphism-Precategory C D F G H
( natural-isomorphism-eq-Precategory C D G H q)
( natural-isomorphism-eq-Precategory C D F G p)
preserves-concat-natural-isomorphism-eq-Precategory refl q =
inv
( right-unit-law-comp-natural-isomorphism-Precategory C D F H
( natural-isomorphism-eq-Precategory C D G H q))
```