# Rigid objects in a category
```agda
module category-theory.rigid-objects-categories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.categories
open import category-theory.rigid-objects-precategories
open import foundation.propositions
open import foundation.universe-levels
```
</details>
## Idea
A **rigid object** in a [category](category-theory.categories.md) is an object
whose [automorphism group](group-theory.automorphism-groups.md) is
[trivial](group-theory.trivial-groups.md).
## Definitions
### The predicate of being rigid
```agda
module _
{l1 l2 : Level} (C : Category l1 l2) (x : obj-Category C)
where
is-rigid-obj-prop-Category : Prop l2
is-rigid-obj-prop-Category =
is-rigid-obj-prop-Precategory (precategory-Category C) x
is-rigid-obj-Category : UU l2
is-rigid-obj-Category = type-Prop is-rigid-obj-prop-Category
is-prop-is-rigid-obj-Category : is-prop is-rigid-obj-Category
is-prop-is-rigid-obj-Category =
is-prop-type-Prop is-rigid-obj-prop-Category
```
### The type of rigid objects in a category
```agda
rigid-obj-Category : {l1 l2 : Level} (C : Category l1 l2) → UU (l1 ⊔ l2)
rigid-obj-Category C =
rigid-obj-Precategory (precategory-Category C)
module _
{l1 l2 : Level} (C : Category l1 l2)
where
obj-rigid-obj-Category : rigid-obj-Category C → obj-Category C
obj-rigid-obj-Category = obj-rigid-obj-Precategory (precategory-Category C)
is-rigid-rigid-obj-Category :
(x : rigid-obj-Category C) →
is-rigid-obj-Category C (obj-rigid-obj-Category x)
is-rigid-rigid-obj-Category =
is-rigid-rigid-obj-Precategory (precategory-Category C)
```
## See also
- Every object in a category is rigid if and only if it is
[gaunt](category-theory.gaunt-categories.md).
## External links
- [rigid object](https://ncatlab.org/nlab/show/rigid+object) at $n$Lab