# Categories
```agda
module category-theory.categories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.composition-operations-on-binary-families-of-sets
open import category-theory.isomorphisms-in-precategories
open import category-theory.nonunital-precategories
open import category-theory.precategories
open import category-theory.preunivalent-categories
open import foundation.1-types
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.propositions
open import foundation.sets
open import foundation.strictly-involutive-identity-types
open import foundation.surjective-maps
open import foundation.universe-levels
```
</details>
## Idea
A {{#concept "category" Agda=Category}} in Homotopy Type Theory is a
[precategory](category-theory.precategories.md) for which the
[identifications](foundation-core.identity-types.md) between the objects are the
[isomorphisms](category-theory.isomorphisms-in-precategories.md). More
specifically, an equality between objects gives rise to an isomorphism between
them, by the J-rule. A precategory is a category if this function, called
`iso-eq`, is an [equivalence](foundation-core.equivalences.md). In particular,
being a category is a [proposition](foundation-core.propositions.md) since
`is-equiv` is a proposition.
## Definitions
### The predicate on precategories of being a category
```agda
module _
{l1 l2 : Level} (C : Precategory l1 l2)
where
is-category-prop-Precategory : Prop (l1 ⊔ l2)
is-category-prop-Precategory =
Π-Prop
( obj-Precategory C)
( λ x →
Π-Prop
( obj-Precategory C)
( λ y → is-equiv-Prop (iso-eq-Precategory C x y)))
is-category-Precategory : UU (l1 ⊔ l2)
is-category-Precategory = type-Prop is-category-prop-Precategory
is-prop-is-category-Precategory : is-prop is-category-Precategory
is-prop-is-category-Precategory =
is-prop-type-Prop is-category-prop-Precategory
```
### The type of categories
```agda
Category : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
Category l1 l2 = Σ (Precategory l1 l2) (is-category-Precategory)
module _
{l1 l2 : Level} (C : Category l1 l2)
where
precategory-Category : Precategory l1 l2
precategory-Category = pr1 C
obj-Category : UU l1
obj-Category = obj-Precategory precategory-Category
hom-set-Category : obj-Category → obj-Category → Set l2
hom-set-Category = hom-set-Precategory precategory-Category
hom-Category : obj-Category → obj-Category → UU l2
hom-Category = hom-Precategory precategory-Category
is-set-hom-Category :
(x y : obj-Category) → is-set (hom-Category x y)
is-set-hom-Category = is-set-hom-Precategory precategory-Category
comp-hom-Category :
{x y z : obj-Category} →
hom-Category y z → hom-Category x y → hom-Category x z
comp-hom-Category = comp-hom-Precategory precategory-Category
associative-comp-hom-Category :
{x y z w : obj-Category}
(h : hom-Category z w)
(g : hom-Category y z)
(f : hom-Category x y) →
comp-hom-Category (comp-hom-Category h g) f =
comp-hom-Category h (comp-hom-Category g f)
associative-comp-hom-Category =
associative-comp-hom-Precategory precategory-Category
involutive-eq-associative-comp-hom-Category :
{x y z w : obj-Category}
(h : hom-Category z w)
(g : hom-Category y z)
(f : hom-Category x y) →
comp-hom-Category (comp-hom-Category h g) f =ⁱ
comp-hom-Category h (comp-hom-Category g f)
involutive-eq-associative-comp-hom-Category =
involutive-eq-associative-comp-hom-Precategory precategory-Category
associative-composition-operation-Category :
associative-composition-operation-binary-family-Set hom-set-Category
associative-composition-operation-Category =
associative-composition-operation-Precategory precategory-Category
id-hom-Category : {x : obj-Category} → hom-Category x x
id-hom-Category = id-hom-Precategory precategory-Category
left-unit-law-comp-hom-Category :
{x y : obj-Category} (f : hom-Category x y) →
comp-hom-Category id-hom-Category f = f
left-unit-law-comp-hom-Category =
left-unit-law-comp-hom-Precategory precategory-Category
right-unit-law-comp-hom-Category :
{x y : obj-Category} (f : hom-Category x y) →
comp-hom-Category f id-hom-Category = f
right-unit-law-comp-hom-Category =
right-unit-law-comp-hom-Precategory precategory-Category
is-unital-composition-operation-Category :
is-unital-composition-operation-binary-family-Set
hom-set-Category
comp-hom-Category
is-unital-composition-operation-Category =
is-unital-composition-operation-Precategory precategory-Category
is-category-Category :
is-category-Precategory precategory-Category
is-category-Category = pr2 C
```
### The underlying nonunital precategory of a category
```agda
module _
{l1 l2 : Level} (C : Category l1 l2)
where
nonunital-precategory-Category : Nonunital-Precategory l1 l2
nonunital-precategory-Category =
nonunital-precategory-Precategory (precategory-Category C)
```
### The underlying preunivalent category of a category
```agda
module _
{l1 l2 : Level} (C : Category l1 l2)
where
is-preunivalent-category-Category :
is-preunivalent-Precategory (precategory-Category C)
is-preunivalent-category-Category x y =
is-emb-is-equiv (is-category-Category C x y)
preunivalent-category-Category : Preunivalent-Category l1 l2
pr1 preunivalent-category-Category = precategory-Category C
pr2 preunivalent-category-Category = is-preunivalent-category-Category
```
### The total hom-type of a category
```agda
total-hom-Category :
{l1 l2 : Level} (C : Category l1 l2) → UU (l1 ⊔ l2)
total-hom-Category C = total-hom-Precategory (precategory-Category C)
obj-total-hom-Category :
{l1 l2 : Level} (C : Category l1 l2) →
total-hom-Category C →
obj-Category C × obj-Category C
obj-total-hom-Category C = obj-total-hom-Precategory (precategory-Category C)
```
### Equalities induce morphisms
```agda
module _
{l1 l2 : Level} (C : Category l1 l2) (x y : obj-Category C)
where
hom-eq-Category : x = y → hom-Category C x y
hom-eq-Category = hom-eq-Precategory (precategory-Category C) x y
hom-inv-eq-Category : x = y → hom-Category C y x
hom-inv-eq-Category = hom-inv-eq-Precategory (precategory-Category C) x y
```
### Pre- and postcomposition by a morphism
```agda
precomp-hom-Category :
{l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C}
(f : hom-Category C x y) (z : obj-Category C) →
hom-Category C y z → hom-Category C x z
precomp-hom-Category C = precomp-hom-Precategory (precategory-Category C)
postcomp-hom-Category :
{l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C}
(f : hom-Category C x y) (z : obj-Category C) →
hom-Category C z x → hom-Category C z y
postcomp-hom-Category C = postcomp-hom-Precategory (precategory-Category C)
```
## Properties
### The objects in a category form a 1-type
The type of identities between two objects in a category is equivalent to the
type of isomorphisms between them. But this type is a set, and thus the identity
type is a set.
```agda
module _
{l1 l2 : Level} (C : Category l1 l2)
where
is-1-type-obj-Category : is-1-type (obj-Category C)
is-1-type-obj-Category =
is-1-type-obj-Preunivalent-Category (preunivalent-category-Category C)
obj-1-type-Category : 1-Type l1
obj-1-type-Category =
obj-1-type-Preunivalent-Category (preunivalent-category-Category C)
```
### The total hom-type of a category is a 1-type
```agda
module _
{l1 l2 : Level} (C : Category l1 l2)
where
is-1-type-total-hom-Category :
is-1-type (total-hom-Category C)
is-1-type-total-hom-Category =
is-1-type-total-hom-Preunivalent-Category (preunivalent-category-Category C)
total-hom-1-type-Category : 1-Type (l1 ⊔ l2)
total-hom-1-type-Category =
total-hom-1-type-Preunivalent-Category (preunivalent-category-Category C)
```
### A preunivalent category is a category if and only if `iso-eq` is surjective
```agda
module _
{l1 l2 : Level} (C : Precategory l1 l2)
where
is-surjective-iso-eq-prop-Precategory : Prop (l1 ⊔ l2)
is-surjective-iso-eq-prop-Precategory =
Π-Prop
( obj-Precategory C)
( λ x →
Π-Prop
( obj-Precategory C)
( λ y →
is-surjective-Prop
( iso-eq-Precategory C x y)))
is-surjective-iso-eq-Precategory : UU (l1 ⊔ l2)
is-surjective-iso-eq-Precategory =
type-Prop is-surjective-iso-eq-prop-Precategory
is-prop-is-surjective-iso-eq-Precategory :
is-prop is-surjective-iso-eq-Precategory
is-prop-is-surjective-iso-eq-Precategory =
is-prop-type-Prop is-surjective-iso-eq-prop-Precategory
```
```agda
module _
{l1 l2 : Level} (C : Preunivalent-Category l1 l2)
where
is-category-is-surjective-iso-eq-Preunivalent-Category :
is-surjective-iso-eq-Precategory (precategory-Preunivalent-Category C) →
is-category-Precategory (precategory-Preunivalent-Category C)
is-category-is-surjective-iso-eq-Preunivalent-Category
is-surjective-iso-eq-C x y =
is-equiv-is-emb-is-surjective
( is-surjective-iso-eq-C x y)
( is-preunivalent-Preunivalent-Category C x y)
is-surjective-iso-eq-is-category-Preunivalent-Category :
is-category-Precategory (precategory-Preunivalent-Category C) →
is-surjective-iso-eq-Precategory (precategory-Preunivalent-Category C)
is-surjective-iso-eq-is-category-Preunivalent-Category
is-category-C x y =
is-surjective-is-equiv (is-category-C x y)
is-equiv-is-category-is-surjective-iso-eq-Preunivalent-Category :
is-equiv is-category-is-surjective-iso-eq-Preunivalent-Category
is-equiv-is-category-is-surjective-iso-eq-Preunivalent-Category =
is-equiv-has-converse-is-prop
( is-prop-is-surjective-iso-eq-Precategory
( precategory-Preunivalent-Category C))
( is-prop-is-category-Precategory (precategory-Preunivalent-Category C))
( is-surjective-iso-eq-is-category-Preunivalent-Category)
is-equiv-is-surjective-iso-eq-is-category-Preunivalent-Category :
is-equiv is-surjective-iso-eq-is-category-Preunivalent-Category
is-equiv-is-surjective-iso-eq-is-category-Preunivalent-Category =
is-equiv-has-converse-is-prop
( is-prop-is-category-Precategory (precategory-Preunivalent-Category C))
( is-prop-is-surjective-iso-eq-Precategory
( precategory-Preunivalent-Category C))
( is-category-is-surjective-iso-eq-Preunivalent-Category)
equiv-is-category-is-surjective-iso-eq-Preunivalent-Category :
is-surjective-iso-eq-Precategory (precategory-Preunivalent-Category C) ≃
is-category-Precategory (precategory-Preunivalent-Category C)
pr1 equiv-is-category-is-surjective-iso-eq-Preunivalent-Category =
is-category-is-surjective-iso-eq-Preunivalent-Category
pr2 equiv-is-category-is-surjective-iso-eq-Preunivalent-Category =
is-equiv-is-category-is-surjective-iso-eq-Preunivalent-Category
equiv-is-surjective-iso-eq-is-category-Preunivalent-Category :
is-category-Precategory (precategory-Preunivalent-Category C) ≃
is-surjective-iso-eq-Precategory (precategory-Preunivalent-Category C)
pr1 equiv-is-surjective-iso-eq-is-category-Preunivalent-Category =
is-surjective-iso-eq-is-category-Preunivalent-Category
pr2 equiv-is-surjective-iso-eq-is-category-Preunivalent-Category =
is-equiv-is-surjective-iso-eq-is-category-Preunivalent-Category
```