# Decidable maps
```agda
module foundation.decidable-maps where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.decidable-equality
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.identity-types
open import foundation-core.retractions
```
</details>
## Definition
A map is said to be decidable if its fibers are decidable types.
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-decidable-map : (A → B) → UU (l1 ⊔ l2)
is-decidable-map f = (y : B) → is-decidable (fiber f y)
```
```agda
is-decidable-map-retraction :
{l1 l2 : Level} {A : UU l1} {B : UU l2} → has-decidable-equality B →
(i : A → B) → retraction i → is-decidable-map i
is-decidable-map-retraction d i (pair r R) b =
is-decidable-iff
( λ (p : i (r b) = b) → pair (r b) p)
( λ t → ap (i ∘ r) (inv (pr2 t)) ∙ (ap i (R (pr1 t)) ∙ pr2 t))
( d (i (r b)) b)
```
## Properties
### The map on total spaces induced by a family of decidable embeddings is a decidable embeddings
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3}
where
is-decidable-map-tot :
{f : (x : A) → B x → C x} →
((x : A) → is-decidable-map (f x)) → is-decidable-map (tot f)
is-decidable-map-tot {f} H x =
is-decidable-is-equiv
( is-equiv-map-equiv
( compute-fiber-tot f x))
( H (pr1 x) (pr2 x))
```