# Descent for coproduct types
```agda
{-# OPTIONS --lossy-unification #-}
module foundation.descent-coproduct-types where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.functoriality-coproduct-types
open import foundation.functoriality-fibers-of-maps
open import foundation.universe-levels
open import foundation.whiskering-identifications-concatenation
open import foundation-core.coproduct-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.families-of-equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.pullbacks
```
</details>
## Theorem
```agda
module _
{l1 l2 l3 l1' l2' l3' : Level}
{A : UU l1} {B : UU l2} {X : UU l3}
{A' : UU l1'} {B' : UU l2'} {X' : UU l3'}
(f : A' → A) (g : B' → B) (h : X' → X)
(αA : A → X) (αB : B → X) (αA' : A' → X') (αB' : B' → X')
(HA : αA ∘ f ~ h ∘ αA') (HB : αB ∘ g ~ h ∘ αB')
where
triangle-descent-square-fiber-map-coproduct-inl-fiber :
(x : A) →
( map-fiber-vertical-map-cone αA h (f , αA' , HA) x) ~
( map-fiber-vertical-map-cone (ind-coproduct _ αA αB) h
( map-coproduct f g , ind-coproduct _ αA' αB' , ind-coproduct _ HA HB)
( inl x)) ∘
( fiber-map-coproduct-inl-fiber f g x)
triangle-descent-square-fiber-map-coproduct-inl-fiber x (a' , p) =
eq-pair-eq-fiber
( left-whisker-concat
( inv (HA a'))
( ap-comp (ind-coproduct _ αA αB) inl p))
triangle-descent-square-fiber-map-coproduct-inr-fiber :
(y : B) →
( map-fiber-vertical-map-cone αB h (g , αB' , HB) y) ~
( map-fiber-vertical-map-cone (ind-coproduct _ αA αB) h
( map-coproduct f g , ind-coproduct _ αA' αB' , ind-coproduct _ HA HB)
( inr y)) ∘
( fiber-map-coproduct-inr-fiber f g y)
triangle-descent-square-fiber-map-coproduct-inr-fiber y (b' , p) =
eq-pair-eq-fiber
( left-whisker-concat
( inv (HB b'))
( ap-comp (ind-coproduct _ αA αB) inr p))
module _
{l1 l2 l3 l1' l2' l3' : Level}
{A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'}
(f : A → X) (g : B → X) (i : X' → X)
where
cone-descent-coproduct :
(cone-A' : cone f i A') (cone-B' : cone g i B') →
cone (ind-coproduct _ f g) i (A' + B')
pr1 (cone-descent-coproduct (h , f' , H) (k , g' , K)) = map-coproduct h k
pr1 (pr2 (cone-descent-coproduct (h , f' , H) (k , g' , K))) (inl a') = f' a'
pr1 (pr2 (cone-descent-coproduct (h , f' , H) (k , g' , K))) (inr b') = g' b'
pr2 (pr2 (cone-descent-coproduct (h , f' , H) (k , g' , K))) (inl a') = H a'
pr2 (pr2 (cone-descent-coproduct (h , f' , H) (k , g' , K))) (inr b') = K b'
abstract
descent-coproduct :
(cone-A' : cone f i A') (cone-B' : cone g i B') →
is-pullback f i cone-A' →
is-pullback g i cone-B' →
is-pullback
( ind-coproduct _ f g)
( i)
( cone-descent-coproduct cone-A' cone-B')
descent-coproduct (h , f' , H) (k , g' , K) is-pb-cone-A' is-pb-cone-B' =
is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone
( ind-coproduct _ f g)
( i)
( cone-descent-coproduct (h , f' , H) (k , g' , K))
( α)
where
α :
is-fiberwise-equiv
( map-fiber-vertical-map-cone
( ind-coproduct (λ _ → X) f g)
( i)
( cone-descent-coproduct (h , f' , H) (k , g' , K)))
α (inl x) =
is-equiv-right-map-triangle
( map-fiber-vertical-map-cone f i (h , f' , H) x)
( map-fiber-vertical-map-cone (ind-coproduct _ f g) i
( cone-descent-coproduct (h , f' , H) (k , g' , K))
( inl x))
( fiber-map-coproduct-inl-fiber h k x)
( triangle-descent-square-fiber-map-coproduct-inl-fiber
h k i f g f' g' H K x)
( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback f i
( h , f' , H) is-pb-cone-A' x)
( is-equiv-fiber-map-coproduct-inl-fiber h k x)
α (inr y) =
is-equiv-right-map-triangle
( map-fiber-vertical-map-cone g i (k , g' , K) y)
( map-fiber-vertical-map-cone
( ind-coproduct _ f g) i
( cone-descent-coproduct (h , f' , H) (k , g' , K))
( inr y))
( fiber-map-coproduct-inr-fiber h k y)
( triangle-descent-square-fiber-map-coproduct-inr-fiber
h k i f g f' g' H K y)
( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback g i
( k , g' , K) is-pb-cone-B' y)
( is-equiv-fiber-map-coproduct-inr-fiber h k y)
abstract
descent-coproduct-inl :
(cone-A' : cone f i A') (cone-B' : cone g i B') →
is-pullback
( ind-coproduct _ f g)
( i)
( cone-descent-coproduct cone-A' cone-B') →
is-pullback f i cone-A'
descent-coproduct-inl (h , f' , H) (k , g' , K) is-pb-dsq =
is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone f i
( h , f' , H)
( λ a →
is-equiv-left-map-triangle
( map-fiber-vertical-map-cone f i (h , f' , H) a)
( map-fiber-vertical-map-cone (ind-coproduct _ f g) i
( cone-descent-coproduct (h , f' , H) (k , g' , K))
( inl a))
( fiber-map-coproduct-inl-fiber h k a)
( triangle-descent-square-fiber-map-coproduct-inl-fiber
h k i f g f' g' H K a)
( is-equiv-fiber-map-coproduct-inl-fiber h k a)
( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
( ind-coproduct _ f g)
( i)
( cone-descent-coproduct ( h , f' , H) (k , g' , K))
( is-pb-dsq)
( inl a)))
abstract
descent-coproduct-inr :
(cone-A' : cone f i A') (cone-B' : cone g i B') →
is-pullback
( ind-coproduct _ f g)
( i)
( cone-descent-coproduct cone-A' cone-B') →
is-pullback g i cone-B'
descent-coproduct-inr (h , f' , H) (k , g' , K) is-pb-dsq =
is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone g i
( k , g' , K)
( λ b →
is-equiv-left-map-triangle
( map-fiber-vertical-map-cone g i (k , g' , K) b)
( map-fiber-vertical-map-cone (ind-coproduct _ f g) i
( cone-descent-coproduct (h , f' , H) (k , g' , K))
( inr b))
( fiber-map-coproduct-inr-fiber h k b)
( triangle-descent-square-fiber-map-coproduct-inr-fiber
h k i f g f' g' H K b)
( is-equiv-fiber-map-coproduct-inr-fiber h k b)
( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback
( ind-coproduct _ f g)
( i)
( cone-descent-coproduct (h , f' , H) (k , g' , K))
( is-pb-dsq)
( inr b)))
```