# Injective maps
```agda
module foundation.injective-maps where
open import foundation-core.injective-maps public
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.logical-equivalences
open import foundation.universe-levels
open import foundation-core.embeddings
open import foundation-core.empty-types
open import foundation-core.identity-types
open import foundation-core.negation
open import foundation-core.propositional-maps
open import foundation-core.propositions
open import foundation-core.sets
```
</details>
## Idea
A map `f : A → B` is **injective** if `f x = f y` implies `x = y`.
## Warning
The notion of injective map is, however, not homotopically coherent. It is fine
to use injectivity for maps between [sets](foundation-core.sets.md), but for
maps between general types it is recommended to use the notion of
[embedding](foundation-core.embeddings.md).
## Definitions
### Noninjective maps
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-not-injective : (A → B) → UU (l1 ⊔ l2)
is-not-injective f = ¬ (is-injective f)
```
### Any map out of an empty type is injective
```agda
is-injective-is-empty :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-empty A → is-injective f
is-injective-is-empty f is-empty-A {x} = ex-falso (is-empty-A x)
```
### Any injective map between sets is an embedding
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
abstract
is-emb-is-injective' :
(is-set-A : is-set A) (is-set-B : is-set B) (f : A → B) →
is-injective f → is-emb f
is-emb-is-injective' is-set-A is-set-B f is-injective-f x y =
is-equiv-has-converse-is-prop
( is-set-A x y)
( is-set-B (f x) (f y))
( is-injective-f)
is-emb-is-injective :
{f : A → B} → is-set B → is-injective f → is-emb f
is-emb-is-injective {f} H I =
is-emb-is-injective' (is-set-is-injective H I) H f I
is-prop-map-is-injective :
{f : A → B} → is-set B → is-injective f → is-prop-map f
is-prop-map-is-injective {f} H I =
is-prop-map-is-emb (is-emb-is-injective H I)
```
### For a map between sets, being injective is a property
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-prop-is-injective :
is-set A → (f : A → B) → is-prop (is-injective f)
is-prop-is-injective H f =
is-prop-implicit-Π
( λ x →
is-prop-implicit-Π
( λ y → is-prop-function-type (H x y)))
is-injective-Prop : is-set A → (A → B) → Prop (l1 ⊔ l2)
pr1 (is-injective-Prop H f) = is-injective f
pr2 (is-injective-Prop H f) = is-prop-is-injective H f
```
## See also
- [Embeddings](foundation-core.embeddings.md)
- [Path-cosplit maps](foundation.path-cosplit-maps.md)