# The law of excluded middle
```agda
module foundation.law-of-excluded-middle where
```
<details><summary>Imports</summary>
```agda
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.universe-levels
open import foundation-core.decidable-propositions
open import foundation-core.negation
open import foundation-core.propositions
open import univalent-combinatorics.2-element-types
```
</details>
## Idea
The {{#concept "law of excluded middle" Agda=LEM}} asserts that any
[proposition](foundation-core.propositions.md) `P` is
[decidable](foundation.decidable-types.md).
## Definition
```agda
LEM : (l : Level) → UU (lsuc l)
LEM l = (P : Prop l) → is-decidable (type-Prop P)
```
## Properties
### Given LEM, we obtain a map from the type of propositions to the type of decidable propositions
```agda
decidable-prop-Prop :
{l : Level} → LEM l → Prop l → Decidable-Prop l
pr1 (decidable-prop-Prop lem P) = type-Prop P
pr1 (pr2 (decidable-prop-Prop lem P)) = is-prop-type-Prop P
pr2 (pr2 (decidable-prop-Prop lem P)) = lem P
```
### The unrestricted law of excluded middle does not hold
```agda
abstract
no-global-decidability :
{l : Level} → ¬ ((X : UU l) → is-decidable X)
no-global-decidability {l} d =
is-not-decidable-type-2-Element-Type (λ X → d (pr1 X))
```