# Path-split maps
```agda
module foundation.path-split-maps where
open import foundation-core.path-split-maps public
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.iterated-dependent-product-types
open import foundation.logical-equivalences
open import foundation.universe-levels
open import foundation-core.contractible-types
open import foundation-core.propositions
```
</details>
## Properties
### Being path-split is a property
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
abstract
is-prop-is-path-split : (f : A → B) → is-prop (is-path-split f)
is-prop-is-path-split f =
is-prop-is-proof-irrelevant
( λ is-path-split-f →
( is-contr-product
( is-contr-section-is-equiv
( is-equiv-is-path-split f is-path-split-f))
( is-contr-iterated-Π 2
( λ x y →
is-contr-section-is-equiv
( is-emb-is-equiv
( is-equiv-is-path-split f is-path-split-f) x y)))))
abstract
is-equiv-is-path-split-is-equiv :
(f : A → B) → is-equiv (is-path-split-is-equiv f)
is-equiv-is-path-split-is-equiv f =
is-equiv-has-converse-is-prop
( is-property-is-equiv f)
( is-prop-is-path-split f)
( is-equiv-is-path-split f)
equiv-is-path-split-is-equiv : (f : A → B) → is-equiv f ≃ is-path-split f
equiv-is-path-split-is-equiv f =
pair (is-path-split-is-equiv f) (is-equiv-is-path-split-is-equiv f)
abstract
is-equiv-is-equiv-is-path-split :
(f : A → B) → is-equiv (is-equiv-is-path-split f)
is-equiv-is-equiv-is-path-split f =
is-equiv-has-converse-is-prop
( is-prop-is-path-split f)
( is-property-is-equiv f)
( is-path-split-is-equiv f)
equiv-is-equiv-is-path-split : (f : A → B) → is-path-split f ≃ is-equiv f
equiv-is-equiv-is-path-split f =
( is-equiv-is-path-split f , is-equiv-is-equiv-is-path-split f)
```
## See also
- For the notion of biinvertible maps see
[`foundation.equivalences`](foundation.equivalences.md).
- For the notion of coherently invertible maps, also known as half-adjoint
equivalences, see
[`foundation.coherently-invertible-maps`](foundation.coherently-invertible-maps.md).
- For the notion of maps with contractible fibers see
[`foundation.contractible-maps`](foundation.contractible-maps.md).
## References
{{#bibliography}} {{#reference UF13}} {{#reference Shu14UniversalProperties}}