# Preunivalent type families
```agda
module foundation.preunivalent-type-families where
```
<details><summary>Imports</summary>
```agda
open import foundation.0-maps
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalence-injective-type-families
open import foundation.faithful-maps
open import foundation.function-types
open import foundation.injective-maps
open import foundation.preunivalence
open import foundation.retractions
open import foundation.sets
open import foundation.subuniverses
open import foundation.transport-along-identifications
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.identity-types
open import foundation-core.univalence
```
</details>
## Idea
A type family `B` over `A` is said to be
{{#concept "preunivalent" Disambiguation="type family" Agda=is-preunivalent}} if
the map
```text
equiv-tr B : x = y → B x ≃ B y
```
is an [embedding](foundation-core.embeddings.md) for every `x y : A`.
## Definition
```agda
is-preunivalent :
{l1 l2 : Level} {A : UU l1} → (A → UU l2) → UU (l1 ⊔ l2)
is-preunivalent {A = A} B = (x y : A) → is-emb (λ (p : x = y) → equiv-tr B p)
```
## Properties
### The preunivalence axiom states that the identity family `id : 𝒰 → 𝒰` is preunivalent
```agda
is-preunivalent-UU :
(l : Level) → is-preunivalent (id {A = UU l})
is-preunivalent-UU l = preunivalence
```
### Assuming the preunivalence axiom, type families are preunivalent if and only if they are faithful as maps
**Proof:** We have the
[commuting triangle of maps](foundation-core.commuting-triangles-of-maps.md)
```text
ap B
(x = y) -----> (B x = B y)
\ /
\ /
equiv-tr B \ / equiv-eq
∨ ∨
(B x ≃ B y)
```
where the right edge is an embedding by the
[preunivalence axiom](foundation.preunivalence.md). Hence, the top map is an
embedding if and only if the left map is.
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
where
abstract
is-faithful-is-preunivalent :
is-preunivalent B → is-faithful B
is-faithful-is-preunivalent U x y =
is-emb-top-map-triangle
( equiv-tr B)
( equiv-eq)
( ap B)
( λ where refl → refl)
( preunivalence (B x) (B y))
( U x y)
is-preunivalent-is-faithful :
is-faithful B → is-preunivalent B
is-preunivalent-is-faithful is-faithful-B x y =
is-emb-left-map-triangle
( equiv-tr B)
( equiv-eq)
( ap B)
( λ where refl → refl)
( preunivalence (B x) (B y))
( is-faithful-B x y)
is-0-map-is-preunivalent :
is-preunivalent B → is-0-map B
is-0-map-is-preunivalent U =
is-0-map-is-faithful (is-faithful-is-preunivalent U)
is-preunivalent-is-0-map :
is-0-map B → is-preunivalent B
is-preunivalent-is-0-map H =
is-preunivalent-is-faithful (is-faithful-is-0-map H)
```
### Families of sets are preunivalent if `equiv-tr` is fiberwise injective
```agda
module _
{l1 l2 : Level} {A : UU l1} (B : A → UU l2)
(is-set-B : (x : A) → is-set (B x))
where
is-preunivalent-is-injective-equiv-tr-is-set :
((x y : A) → is-injective (equiv-tr B {x} {y})) →
is-preunivalent B
is-preunivalent-is-injective-equiv-tr-is-set is-inj-B x y =
is-emb-is-injective
( is-set-equiv-is-set (is-set-B x) (is-set-B y))
( is-inj-B x y)
is-preunivalent-retraction-equiv-tr-is-set :
((x y : A) → retraction (equiv-tr B {x} {y})) →
is-preunivalent B
is-preunivalent-retraction-equiv-tr-is-set R =
is-preunivalent-is-injective-equiv-tr-is-set
( λ x y → is-injective-retraction (equiv-tr B) (R x y))
module _
{l1 l2 : Level} {A : UU l1} (B : A → Set l2)
where
is-preunivalent-is-injective-equiv-tr-Set :
((x y : A) → is-injective (equiv-tr (type-Set ∘ B) {x} {y})) →
is-preunivalent (type-Set ∘ B)
is-preunivalent-is-injective-equiv-tr-Set =
is-preunivalent-is-injective-equiv-tr-is-set
( type-Set ∘ B)
( is-set-type-Set ∘ B)
is-preunivalent-retraction-equiv-tr-Set :
((x y : A) → retraction (equiv-tr (type-Set ∘ B) {x} {y})) →
is-preunivalent (type-Set ∘ B)
is-preunivalent-retraction-equiv-tr-Set =
is-preunivalent-retraction-equiv-tr-is-set
( type-Set ∘ B)
( is-set-type-Set ∘ B)
```
### Inclusions of subuniverses into the universe are preunivalent
**Note.** These proofs rely on essential use of the preunivalence axiom.
```agda
is-preunivalent-projection-Type-With-Set-Element :
{l1 l2 : Level} (S : UU l1 → Set l2) →
is-preunivalent (pr1 {A = UU l1} {B = type-Set ∘ S})
is-preunivalent-projection-Type-With-Set-Element S =
is-preunivalent-is-0-map (is-0-map-pr1 (is-set-type-Set ∘ S))
is-preunivalent-inclusion-subuniverse :
{l1 l2 : Level} (S : subuniverse l1 l2) →
is-preunivalent (inclusion-subuniverse S)
is-preunivalent-inclusion-subuniverse S =
is-preunivalent-projection-Type-With-Set-Element (set-Prop ∘ S)
```
## See also
- [Univalent type families](foundation.univalent-type-families.md)
- [Transport-split type families](foundation.transport-split-type-families.md)
- The [standard finite types](univalent-combinatorics.standard-finite-types.md)
is a type family which is preunivalent but not univalent.