# Trivial relaxed Σ-decompositions
```agda
module foundation.trivial-relaxed-sigma-decompositions where
```
<details><summary>Imports</summary>
```agda
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.relaxed-sigma-decompositions
open import foundation.transposition-identifications-along-equivalences
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.unit-type
open import foundation.universe-levels
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.subtypes
```
</details>
## Idea
A relaxed Σ-decomposition is said to be **trivial** if its indexing type is
contractible.
## Definitions
### The predicate of being a trivial relaxed Σ-decomposition
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} (D : Relaxed-Σ-Decomposition l2 l3 A)
where
is-trivial-relaxed-Σ-decomposition-Prop : Prop l2
is-trivial-relaxed-Σ-decomposition-Prop =
is-contr-Prop (indexing-type-Relaxed-Σ-Decomposition D)
is-trivial-Relaxed-Σ-Decomposition : UU l2
is-trivial-Relaxed-Σ-Decomposition =
type-Prop is-trivial-relaxed-Σ-decomposition-Prop
```
### The trivial relaxed Σ-decomposition
```agda
module _
{l1 : Level} (l2 : Level) (A : UU l1)
where
trivial-Relaxed-Σ-Decomposition : Relaxed-Σ-Decomposition l2 l1 A
pr1 (trivial-Relaxed-Σ-Decomposition) = raise-unit l2
pr1 (pr2 (trivial-Relaxed-Σ-Decomposition)) x = A
pr2 (pr2 (trivial-Relaxed-Σ-Decomposition)) =
inv-left-unit-law-Σ-is-contr
( is-contr-raise-unit)
( raise-star)
is-trivial-trivial-Relaxed-Σ-Decomposition :
{l1 l2 : Level} {A : UU l1} →
is-trivial-Relaxed-Σ-Decomposition (trivial-Relaxed-Σ-Decomposition l2 A)
is-trivial-trivial-Relaxed-Σ-Decomposition = is-contr-raise-unit
```
## Propositions
### Any trivial relaxed Σ-decomposition is equivalent to the standard trivial relaxed Σ-decomposition
```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1}
(D : Relaxed-Σ-Decomposition l2 l3 A)
( is-trivial : is-trivial-Relaxed-Σ-Decomposition D)
where
equiv-trivial-is-trivial-Relaxed-Σ-Decomposition :
equiv-Relaxed-Σ-Decomposition D (trivial-Relaxed-Σ-Decomposition l4 A)
pr1 equiv-trivial-is-trivial-Relaxed-Σ-Decomposition =
( map-equiv (compute-raise-unit l4) ∘
terminal-map (indexing-type-Relaxed-Σ-Decomposition D) ,
is-equiv-comp
( map-equiv (compute-raise-unit l4))
( terminal-map (indexing-type-Relaxed-Σ-Decomposition D))
( is-equiv-terminal-map-is-contr is-trivial)
( is-equiv-map-equiv ( compute-raise-unit l4)))
pr1 (pr2 equiv-trivial-is-trivial-Relaxed-Σ-Decomposition) x =
( inv-equiv (matching-correspondence-Relaxed-Σ-Decomposition D)) ∘e
( inv-left-unit-law-Σ-is-contr is-trivial x)
pr2 (pr2 equiv-trivial-is-trivial-Relaxed-Σ-Decomposition) a =
eq-pair-eq-fiber
( map-inv-eq-transpose-equiv
( inv-equiv (matching-correspondence-Relaxed-Σ-Decomposition D))
( refl))
```
### The type of all trivial relaxed Σ-decompositions is contractible
```agda
is-contr-type-trivial-Relaxed-Σ-Decomposition :
{l1 l2 : Level} {A : UU l1} →
is-contr
( type-subtype (is-trivial-relaxed-Σ-decomposition-Prop {l1} {l2} {l1} {A}))
pr1 ( is-contr-type-trivial-Relaxed-Σ-Decomposition {l1} {l2} {A}) =
( trivial-Relaxed-Σ-Decomposition l2 A ,
is-trivial-trivial-Relaxed-Σ-Decomposition {l1} {l2} {A})
pr2 ( is-contr-type-trivial-Relaxed-Σ-Decomposition {l1} {l2} {A}) D =
eq-type-subtype
( is-trivial-relaxed-Σ-decomposition-Prop)
( inv
( eq-equiv-Relaxed-Σ-Decomposition
( pr1 D)
( trivial-Relaxed-Σ-Decomposition l2 A)
( equiv-trivial-is-trivial-Relaxed-Σ-Decomposition (pr1 D) (pr2 D))))
```