# Trivial Σ-decompositions
```agda
module foundation.trivial-sigma-decompositions where
```
<details><summary>Imports</summary>
```agda
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.functoriality-propositional-truncation
open import foundation.inhabited-types
open import foundation.sigma-decompositions
open import foundation.transposition-identifications-along-equivalences
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.type-arithmetic-empty-type
open import foundation.unit-type
open import foundation.universe-levels
open import foundation-core.empty-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.subtypes
```
</details>
## Definitions
```agda
module _
{l1 : Level} (l2 : Level) (A : UU l1)
where
trivial-inhabited-Σ-Decomposition :
(p : is-inhabited A) → Σ-Decomposition l2 l1 A
pr1 (trivial-inhabited-Σ-Decomposition p) = raise-unit l2
pr1 (pr2 (trivial-inhabited-Σ-Decomposition p)) = λ _ → (A , p)
pr2 (pr2 (trivial-inhabited-Σ-Decomposition p)) =
inv-left-unit-law-Σ-is-contr
( is-contr-raise-unit)
( raise-star)
trivial-empty-Σ-Decomposition :
(p : is-empty A) → Σ-Decomposition lzero lzero A
pr1 (trivial-empty-Σ-Decomposition p) = empty
pr1 (pr2 (trivial-empty-Σ-Decomposition p)) = ex-falso
pr2 (pr2 (trivial-empty-Σ-Decomposition p)) =
equiv-is-empty
( p)
( map-left-absorption-Σ _)
module _
{l1 l2 l3 : Level} {A : UU l1}
(D : Σ-Decomposition l2 l3 A)
where
is-trivial-Prop-Σ-Decomposition : Prop l2
is-trivial-Prop-Σ-Decomposition =
is-contr-Prop (indexing-type-Σ-Decomposition D)
is-trivial-Σ-Decomposition : UU l2
is-trivial-Σ-Decomposition = type-Prop is-trivial-Prop-Σ-Decomposition
is-trivial-trivial-inhabited-Σ-Decomposition :
{l1 l2 : Level} {A : UU l1} (p : is-inhabited A) →
is-trivial-Σ-Decomposition (trivial-inhabited-Σ-Decomposition l2 A p)
is-trivial-trivial-inhabited-Σ-Decomposition p = is-contr-raise-unit
type-trivial-Σ-Decomposition :
{l1 l2 l3 : Level} {A : UU l1} → UU (l1 ⊔ lsuc l2 ⊔ lsuc l3)
type-trivial-Σ-Decomposition {l1} {l2} {l3} {A} =
type-subtype (is-trivial-Prop-Σ-Decomposition {l1} {l2} {l3} {A})
```
## Propositions
```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1}
(D : Σ-Decomposition l2 l3 A)
( is-trivial : is-trivial-Σ-Decomposition D)
where
is-inhabited-base-type-is-trivial-Σ-Decomposition :
is-inhabited A
is-inhabited-base-type-is-trivial-Σ-Decomposition =
map-equiv-trunc-Prop
( inv-equiv (matching-correspondence-Σ-Decomposition D) ∘e
inv-left-unit-law-Σ-is-contr is-trivial ( center is-trivial))
( is-inhabited-cotype-Σ-Decomposition D ( center is-trivial))
equiv-trivial-is-trivial-Σ-Decomposition :
equiv-Σ-Decomposition D
( trivial-inhabited-Σ-Decomposition
( l4)
( A)
( is-inhabited-base-type-is-trivial-Σ-Decomposition))
pr1 equiv-trivial-is-trivial-Σ-Decomposition =
( map-equiv (compute-raise-unit l4) ∘
terminal-map (indexing-type-Σ-Decomposition D) ,
is-equiv-comp
( map-equiv (compute-raise-unit l4))
( terminal-map (indexing-type-Σ-Decomposition D))
( is-equiv-terminal-map-is-contr is-trivial)
( is-equiv-map-equiv ( compute-raise-unit l4)))
pr1 (pr2 equiv-trivial-is-trivial-Σ-Decomposition) =
( λ x →
( ( inv-equiv (matching-correspondence-Σ-Decomposition D)) ∘e
( inv-left-unit-law-Σ-is-contr is-trivial x)))
pr2 (pr2 equiv-trivial-is-trivial-Σ-Decomposition) a =
eq-pair-eq-fiber
( map-inv-eq-transpose-equiv
( inv-equiv (matching-correspondence-Σ-Decomposition D))
( refl))
is-contr-type-trivial-Σ-Decomposition :
{l1 l2 : Level} {A : UU l1} →
(p : is-inhabited A) →
is-contr (type-trivial-Σ-Decomposition {l1} {l2} {l1} {A})
pr1 ( is-contr-type-trivial-Σ-Decomposition {l1} {l2} {A} p) =
( trivial-inhabited-Σ-Decomposition l2 A p ,
is-trivial-trivial-inhabited-Σ-Decomposition p)
pr2 ( is-contr-type-trivial-Σ-Decomposition {l1} {l2} {A} p) x =
eq-type-subtype
( is-trivial-Prop-Σ-Decomposition)
( inv
( eq-equiv-Σ-Decomposition
( pr1 x)
( trivial-inhabited-Σ-Decomposition l2 A p)
( equiv-trivial-is-trivial-Σ-Decomposition (pr1 x) (pr2 x))))
```