# Truncated maps
```agda
module foundation.truncated-maps where
open import foundation-core.truncated-maps public
```
<details><summary>Imports</summary>
```agda
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.functoriality-fibers-of-maps
open import foundation.universe-levels
open import foundation-core.fibers-of-maps
open import foundation-core.propositions
open import foundation-core.pullbacks
open import foundation-core.truncated-types
open import foundation-core.truncation-levels
```
</details>
## Properties
### Being a truncated map is a property
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-prop-is-trunc-map : (k : 𝕋) (f : A → B) → is-prop (is-trunc-map k f)
is-prop-is-trunc-map k f = is-prop-Π (λ x → is-prop-is-trunc k (fiber f x))
is-trunc-map-Prop : (k : 𝕋) → (A → B) → Prop (l1 ⊔ l2)
pr1 (is-trunc-map-Prop k f) = is-trunc-map k f
pr2 (is-trunc-map-Prop k f) = is-prop-is-trunc-map k f
```
### Pullbacks of truncated maps are truncated maps
```agda
module _
{l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3}
{X : UU l4} (f : A → X) (g : B → X) (c : cone f g C)
where
abstract
is-trunc-vertical-map-is-pullback :
is-pullback f g c →
is-trunc-map k g → is-trunc-map k (vertical-map-cone f g c)
is-trunc-vertical-map-is-pullback pb is-trunc-g a =
is-trunc-is-equiv k
( fiber g (f a))
( map-fiber-vertical-map-cone f g c a)
( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback f g c pb a)
( is-trunc-g (f a))
abstract
is-trunc-horizontal-map-is-pullback :
{l1 l2 l3 l4 : Level} (k : 𝕋)
{A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4}
(f : A → X) (g : B → X) (c : cone f g C) →
is-pullback f g c →
is-trunc-map k f → is-trunc-map k (horizontal-map-cone f g c)
is-trunc-horizontal-map-is-pullback k f g (pair p (pair q H)) pb is-trunc-f =
is-trunc-vertical-map-is-pullback k g f
( swap-cone f g (triple p q H))
( is-pullback-swap-cone f g (triple p q H) pb)
is-trunc-f
```