# The universal property of fiber products
```agda
module foundation.universal-property-fiber-products where
```
<details><summary>Imports</summary>
```agda
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.equality-cartesian-product-types
open import foundation.standard-pullbacks
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.pullbacks
open import foundation-core.universal-property-pullbacks
```
</details>
## Idea
The {{#concept "fiberwise product" Disambiguation="types"}} of two families `P`
and `Q` over a type `X` is the family of types `(P x) × (Q x)` over `X`.
Similarly, the fiber product of two maps `f : A → X` and `g : B → X` is the type
`Σ X (λ x → fiber f x × fiber g x)`, which fits in a
[pullback](foundation-core.pullbacks.md) diagram on `f` and `g`.
```agda
module _
{l1 l2 l3 : Level} {X : UU l1} (P : X → UU l2) (Q : X → UU l3)
where
cone-fiberwise-product :
cone (pr1 {B = P}) (pr1 {B = Q}) (Σ X (λ x → (P x) × (Q x)))
pr1 cone-fiberwise-product = tot (λ _ → pr1)
pr1 (pr2 cone-fiberwise-product) = tot (λ _ → pr2)
pr2 (pr2 cone-fiberwise-product) = refl-htpy
```
We will show that the fiberwise product is a pullback by showing that the gap
map is an equivalence. We do this by directly construct an inverse to the gap
map.
```agda
gap-fiberwise-product :
Σ X (λ x → (P x) × (Q x)) → standard-pullback (pr1 {B = P}) (pr1 {B = Q})
gap-fiberwise-product = gap pr1 pr1 cone-fiberwise-product
inv-gap-fiberwise-product :
standard-pullback (pr1 {B = P}) (pr1 {B = Q}) → Σ X (λ x → (P x) × (Q x))
pr1 (inv-gap-fiberwise-product ((x , p) , (.x , q) , refl)) = x
pr1 (pr2 (inv-gap-fiberwise-product ((x , p) , (.x , q) , refl))) = p
pr2 (pr2 (inv-gap-fiberwise-product ((x , p) , (.x , q) , refl))) = q
abstract
is-section-inv-gap-fiberwise-product :
(gap-fiberwise-product ∘ inv-gap-fiberwise-product) ~ id
is-section-inv-gap-fiberwise-product ((x , p) , (.x , q) , refl) = refl
abstract
is-retraction-inv-gap-fiberwise-product :
(inv-gap-fiberwise-product ∘ gap-fiberwise-product) ~ id
is-retraction-inv-gap-fiberwise-product (x , p , q) = refl
abstract
is-pullback-fiberwise-product :
is-pullback (pr1 {B = P}) (pr1 {B = Q}) cone-fiberwise-product
is-pullback-fiberwise-product =
is-equiv-is-invertible
inv-gap-fiberwise-product
is-section-inv-gap-fiberwise-product
is-retraction-inv-gap-fiberwise-product
abstract
universal-property-pullback-fiberwise-product :
universal-property-pullback
( pr1 {B = P})
( pr1 {B = Q})
( cone-fiberwise-product)
universal-property-pullback-fiberwise-product =
universal-property-pullback-is-pullback pr1 pr1
cone-fiberwise-product
is-pullback-fiberwise-product
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X)
where
cone-total-product-fibers : cone f g (Σ X (λ x → (fiber f x) × (fiber g x)))
pr1 cone-total-product-fibers (x , (a , p) , (b , q)) = a
pr1 (pr2 cone-total-product-fibers) (x , (a , p) , (b , q)) = b
pr2 (pr2 cone-total-product-fibers) (x , (a , p) , (b , q)) = p ∙ inv q
gap-total-product-fibers :
Σ X (λ x → (fiber f x) × (fiber g x)) → standard-pullback f g
gap-total-product-fibers = gap f g cone-total-product-fibers
inv-gap-total-product-fibers :
standard-pullback f g → Σ X (λ x → (fiber f x) × (fiber g x))
pr1 (inv-gap-total-product-fibers (a , b , p)) = g b
pr1 (pr1 (pr2 (inv-gap-total-product-fibers (a , b , p)))) = a
pr2 (pr1 (pr2 (inv-gap-total-product-fibers (a , b , p)))) = p
pr1 (pr2 (pr2 (inv-gap-total-product-fibers (a , b , p)))) = b
pr2 (pr2 (pr2 (inv-gap-total-product-fibers (a , b , p)))) = refl
abstract
is-section-inv-gap-total-product-fibers :
(gap-total-product-fibers ∘ inv-gap-total-product-fibers) ~ id
is-section-inv-gap-total-product-fibers (a , b , p) =
map-extensionality-standard-pullback f g refl refl
( inv right-unit ∙ inv right-unit)
abstract
is-retraction-inv-gap-total-product-fibers :
(inv-gap-total-product-fibers ∘ gap-total-product-fibers) ~ id
is-retraction-inv-gap-total-product-fibers (.(g b) , (a , p) , (b , refl)) =
eq-pair-eq-fiber (eq-pair (eq-pair-eq-fiber right-unit) refl)
abstract
is-pullback-total-product-fibers :
is-pullback f g cone-total-product-fibers
is-pullback-total-product-fibers =
is-equiv-is-invertible
inv-gap-total-product-fibers
is-section-inv-gap-total-product-fibers
is-retraction-inv-gap-total-product-fibers
```
## Table of files about pullbacks
The following table lists files that are about pullbacks as a general concept.
{{#include tables/pullbacks.md}}