# Lists
```agda
module lists.lists where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.action-on-higher-identifications-functions
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.contractible-types
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.equality-dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.maybe
open import foundation.negation
open import foundation.raising-universe-levels
open import foundation.sets
open import foundation.torsorial-type-families
open import foundation.truncated-types
open import foundation.truncation-levels
open import foundation.unit-type
open import foundation.universe-levels
```
</details>
## Idea
The type of lists of elements of a type `A` is defined inductively, with an
empty list and an operation that extends a list with one element from `A`.
## Definition
### The inductive definition of the type of lists
```agda
data list {l : Level} (A : UU l) : UU l where
nil : list A
cons : A → list A → list A
{-# BUILTIN LIST list #-}
```
### Predicates on the type of lists
```agda
is-nil-list : {l : Level} {A : UU l} → list A → UU l
is-nil-list l = (l = nil)
is-nonnil-list : {l : Level} {A : UU l} → list A → UU l
is-nonnil-list l = ¬ (is-nil-list l)
is-cons-list : {l : Level} {A : UU l} → list A → UU l
is-cons-list {l1} {A} l = Σ (A × list A) (λ (a , l') → l = cons a l')
```
## Operations
### Fold
```agda
fold-list :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (b : B) (μ : A → (B → B)) →
list A → B
fold-list b μ nil = b
fold-list b μ (cons a l) = μ a (fold-list b μ l)
```
### The dual of `cons`
```agda
snoc : {l : Level} {A : UU l} → list A → A → list A
snoc nil a = cons a nil
snoc (cons b l) a = cons b (snoc l a)
```
### The unit list
```agda
unit-list : {l : Level} {A : UU l} → A → list A
unit-list a = cons a nil
```
### The length of a list
```agda
length-list : {l : Level} {A : UU l} → list A → ℕ
length-list = fold-list 0 (λ a → succ-ℕ)
```
### The elementhood predicate on lists
```agda
infix 6 _∈-list_
data _∈-list_ {l : Level} {A : UU l} : A → list A → UU l where
is-head : (a : A) (l : list A) → a ∈-list (cons a l)
is-in-tail : (a x : A) (l : list A) → a ∈-list l → a ∈-list (cons x l)
```
## Properties
### A list that uses cons is not nil
```agda
is-nonnil-cons-list :
{l : Level} {A : UU l} →
(a : A) → (l : list A) → is-nonnil-list (cons a l)
is-nonnil-cons-list a l ()
is-nonnil-is-cons-list :
{l : Level} {A : UU l} →
(l : list A) → is-cons-list l → is-nonnil-list l
is-nonnil-is-cons-list l ((a , l') , refl) q =
is-nonnil-cons-list a l' q
```
### A list that uses cons is not nil
```agda
is-cons-is-nonnil-list :
{l : Level} {A : UU l} →
(l : list A) → is-nonnil-list l → is-cons-list l
is-cons-is-nonnil-list nil p = ex-falso (p refl)
is-cons-is-nonnil-list (cons x l) p = ((x , l) , refl)
head-is-nonnil-list :
{l : Level} {A : UU l} →
(l : list A) → is-nonnil-list l → A
head-is-nonnil-list l p =
pr1 (pr1 (is-cons-is-nonnil-list l p))
tail-is-nonnil-list :
{l : Level} {A : UU l} →
(l : list A) → is-nonnil-list l → list A
tail-is-nonnil-list l p =
pr2 (pr1 (is-cons-is-nonnil-list l p))
```
### Characterizing the identity type of lists
```agda
Eq-list : {l1 : Level} {A : UU l1} → list A → list A → UU l1
Eq-list {l1} nil nil = raise-unit l1
Eq-list {l1} nil (cons x l') = raise-empty l1
Eq-list {l1} (cons x l) nil = raise-empty l1
Eq-list {l1} (cons x l) (cons x' l') = (Id x x') × Eq-list l l'
refl-Eq-list : {l1 : Level} {A : UU l1} (l : list A) → Eq-list l l
refl-Eq-list nil = raise-star
refl-Eq-list (cons x l) = pair refl (refl-Eq-list l)
Eq-eq-list :
{l1 : Level} {A : UU l1} (l l' : list A) → Id l l' → Eq-list l l'
Eq-eq-list l .l refl = refl-Eq-list l
eq-Eq-list :
{l1 : Level} {A : UU l1} (l l' : list A) → Eq-list l l' → Id l l'
eq-Eq-list nil nil (map-raise star) = refl
eq-Eq-list nil (cons x l') (map-raise f) = ex-falso f
eq-Eq-list (cons x l) nil (map-raise f) = ex-falso f
eq-Eq-list (cons x l) (cons .x l') (pair refl e) =
ap (cons x) (eq-Eq-list l l' e)
square-eq-Eq-list :
{l1 : Level} {A : UU l1} {x : A} {l l' : list A} (p : Id l l') →
Id
( Eq-eq-list (cons x l) (cons x l') (ap (cons x) p))
( pair refl (Eq-eq-list l l' p))
square-eq-Eq-list refl = refl
is-section-eq-Eq-list :
{l1 : Level} {A : UU l1} (l l' : list A) (e : Eq-list l l') →
Id (Eq-eq-list l l' (eq-Eq-list l l' e)) e
is-section-eq-Eq-list nil nil e = eq-is-contr is-contr-raise-unit
is-section-eq-Eq-list nil (cons x l') e = ex-falso (is-empty-raise-empty e)
is-section-eq-Eq-list (cons x l) nil e = ex-falso (is-empty-raise-empty e)
is-section-eq-Eq-list (cons x l) (cons .x l') (pair refl e) =
( square-eq-Eq-list (eq-Eq-list l l' e)) ∙
( eq-pair-eq-fiber (is-section-eq-Eq-list l l' e))
eq-Eq-refl-Eq-list :
{l1 : Level} {A : UU l1} (l : list A) →
Id (eq-Eq-list l l (refl-Eq-list l)) refl
eq-Eq-refl-Eq-list nil = refl
eq-Eq-refl-Eq-list (cons x l) = ap² (cons x) (eq-Eq-refl-Eq-list l)
is-retraction-eq-Eq-list :
{l1 : Level} {A : UU l1} (l l' : list A) (p : Id l l') →
Id (eq-Eq-list l l' (Eq-eq-list l l' p)) p
is-retraction-eq-Eq-list nil .nil refl = refl
is-retraction-eq-Eq-list (cons x l) .(cons x l) refl =
eq-Eq-refl-Eq-list (cons x l)
is-equiv-Eq-eq-list :
{l1 : Level} {A : UU l1} (l l' : list A) → is-equiv (Eq-eq-list l l')
is-equiv-Eq-eq-list l l' =
is-equiv-is-invertible
( eq-Eq-list l l')
( is-section-eq-Eq-list l l')
( is-retraction-eq-Eq-list l l')
equiv-Eq-list :
{l1 : Level} {A : UU l1} (l l' : list A) → Id l l' ≃ Eq-list l l'
equiv-Eq-list l l' =
pair (Eq-eq-list l l') (is-equiv-Eq-eq-list l l')
is-torsorial-Eq-list :
{l1 : Level} {A : UU l1} (l : list A) →
is-torsorial (Eq-list l)
is-torsorial-Eq-list {A = A} l =
is-contr-equiv'
( Σ (list A) (Id l))
( equiv-tot (equiv-Eq-list l))
( is-torsorial-Id l)
is-trunc-Eq-list :
(k : 𝕋) {l : Level} {A : UU l} → is-trunc (succ-𝕋 (succ-𝕋 k)) A →
(l l' : list A) → is-trunc (succ-𝕋 k) (Eq-list l l')
is-trunc-Eq-list k H nil nil =
is-trunc-is-contr (succ-𝕋 k) is-contr-raise-unit
is-trunc-Eq-list k H nil (cons x l') =
is-trunc-is-empty k is-empty-raise-empty
is-trunc-Eq-list k H (cons x l) nil =
is-trunc-is-empty k is-empty-raise-empty
is-trunc-Eq-list k H (cons x l) (cons y l') =
is-trunc-product (succ-𝕋 k) (H x y) (is-trunc-Eq-list k H l l')
is-trunc-list :
(k : 𝕋) {l : Level} {A : UU l} → is-trunc (succ-𝕋 (succ-𝕋 k)) A →
is-trunc (succ-𝕋 (succ-𝕋 k)) (list A)
is-trunc-list k H l l' =
is-trunc-equiv
( succ-𝕋 k)
( Eq-list l l')
( equiv-Eq-list l l')
( is-trunc-Eq-list k H l l')
is-set-list :
{l : Level} {A : UU l} → is-set A → is-set (list A)
is-set-list = is-trunc-list neg-two-𝕋
list-Set : {l : Level} → Set l → Set l
list-Set A = pair (list (type-Set A)) (is-set-list (is-set-type-Set A))
```
### The length operation behaves well with respect to the other list operations
```agda
length-nil :
{l1 : Level} {A : UU l1} →
Id (length-list {A = A} nil) zero-ℕ
length-nil = refl
is-nil-is-zero-length-list :
{l1 : Level} {A : UU l1}
(l : list A) →
is-zero-ℕ (length-list l) →
is-nil-list l
is-nil-is-zero-length-list nil p = refl
is-nonnil-is-nonzero-length-list :
{l1 : Level} {A : UU l1}
(l : list A) →
is-nonzero-ℕ (length-list l) →
is-nonnil-list l
is-nonnil-is-nonzero-length-list nil p q = p refl
is-nonnil-is-nonzero-length-list (cons x l) p ()
is-nonzero-length-is-nonnil-list :
{l1 : Level} {A : UU l1}
(l : list A) →
is-nonnil-list l →
is-nonzero-ℕ (length-list l)
is-nonzero-length-is-nonnil-list nil p q = p refl
lenght-tail-is-nonnil-list :
{l1 : Level} {A : UU l1}
(l : list A) → (p : is-nonnil-list l) →
succ-ℕ (length-list (tail-is-nonnil-list l p)) =
length-list l
lenght-tail-is-nonnil-list nil p = ex-falso (p refl)
lenght-tail-is-nonnil-list (cons x l) p = refl
```
### Head and tail operations
We define the head and tail operations, and we define the operations of picking
and removing the last element from a list.
```agda
head-snoc-list :
{l : Level} {A : UU l} (l : list A) → A → A
head-snoc-list nil a = a
head-snoc-list (cons h l) a = h
head-list :
{l1 : Level} {A : UU l1} → list A → list A
head-list nil = nil
head-list (cons a x) = unit-list a
tail-list :
{l1 : Level} {A : UU l1} → list A → list A
tail-list nil = nil
tail-list (cons a x) = x
last-element-list :
{l1 : Level} {A : UU l1} → list A → list A
last-element-list nil = nil
last-element-list (cons a nil) = unit-list a
last-element-list (cons a (cons b x)) = last-element-list (cons b x)
```
### Removing the last element of a list
```agda
remove-last-element-list :
{l1 : Level} {A : UU l1} → list A → list A
remove-last-element-list nil = nil
remove-last-element-list (cons a nil) = nil
remove-last-element-list (cons a (cons b x)) =
cons a (remove-last-element-list (cons b x))
```
### Properties of heads and tails and their duals
```agda
head-snoc-snoc-list :
{l1 : Level} {A : UU l1} (x : list A) (a : A) (b : A) →
head-list (snoc (snoc x a) b) = head-list (snoc x a)
head-snoc-snoc-list nil a b = refl
head-snoc-snoc-list (cons c x) a b = refl
tail-snoc-snoc-list :
{l1 : Level} {A : UU l1} (x : list A) (a : A) (b : A) →
tail-list (snoc (snoc x a) b) = snoc (tail-list (snoc x a)) b
tail-snoc-snoc-list nil a b = refl
tail-snoc-snoc-list (cons c x) a b = refl
last-element-snoc :
{l1 : Level} {A : UU l1} (x : list A) (a : A) →
Id (last-element-list (snoc x a)) (unit-list a)
last-element-snoc nil a = refl
last-element-snoc (cons b nil) a = refl
last-element-snoc (cons b (cons c x)) a =
last-element-snoc (cons c x) a
```
### Algebra structure on the type of lists of elements of `A`
```agda
map-algebra-list :
{l1 : Level} (A : UU l1) →
Maybe (A × list A) → list A
map-algebra-list A (inl (a , x)) = cons a x
map-algebra-list A (inr star) = nil
map-inv-algebra-list :
{l1 : Level} (A : UU l1) →
list A → Maybe (A × list A)
map-inv-algebra-list A nil = inr star
map-inv-algebra-list A (cons a x) = inl (pair a x)
is-section-map-inv-algebra-list :
{l1 : Level} (A : UU l1) →
(map-algebra-list A ∘ map-inv-algebra-list A) ~ id
is-section-map-inv-algebra-list A nil = refl
is-section-map-inv-algebra-list A (cons a x) = refl
is-retraction-map-inv-algebra-list :
{l1 : Level} (A : UU l1) →
(map-inv-algebra-list A ∘ map-algebra-list A) ~ id
is-retraction-map-inv-algebra-list A (inl (a , x)) = refl
is-retraction-map-inv-algebra-list A (inr star) = refl
is-equiv-map-algebra-list :
{l1 : Level} (A : UU l1) → is-equiv (map-algebra-list A)
is-equiv-map-algebra-list A =
is-equiv-is-invertible
( map-inv-algebra-list A)
( is-section-map-inv-algebra-list A)
( is-retraction-map-inv-algebra-list A)
```