# Dependent products of large locales
```agda
module order-theory.dependent-products-large-locales where
```
<details><summary>Imports</summary>
```agda
open import foundation.identity-types
open import foundation.large-binary-relations
open import foundation.sets
open import foundation.universe-levels
open import order-theory.dependent-products-large-frames
open import order-theory.greatest-lower-bounds-large-posets
open import order-theory.large-locales
open import order-theory.large-meet-semilattices
open import order-theory.large-posets
open import order-theory.large-suplattices
open import order-theory.least-upper-bounds-large-posets
open import order-theory.top-elements-large-posets
```
</details>
Given a family `L : I → Large-Locale α β` of large locales indexed by a type
`I : UU l`, the product of the large locales `L i` is again a large locale.
```agda
module _
{α : Level → Level} {β : Level → Level → Level} {γ : Level}
{l1 : Level} {I : UU l1} (L : I → Large-Locale α β γ)
where
Π-Large-Locale : Large-Locale (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1) γ
Π-Large-Locale = Π-Large-Frame L
large-poset-Π-Large-Locale :
Large-Poset (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1)
large-poset-Π-Large-Locale = large-poset-Π-Large-Frame L
large-meet-semilattice-Π-Large-Locale :
Large-Meet-Semilattice (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1)
large-meet-semilattice-Π-Large-Locale =
large-meet-semilattice-Π-Large-Frame L
has-meets-Π-Large-Locale :
has-meets-Large-Poset large-poset-Π-Large-Locale
has-meets-Π-Large-Locale = has-meets-Π-Large-Frame L
large-suplattice-Π-Large-Locale :
Large-Suplattice (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1) γ
large-suplattice-Π-Large-Locale = large-suplattice-Π-Large-Frame L
is-large-suplattice-Π-Large-Locale :
is-large-suplattice-Large-Poset γ large-poset-Π-Large-Locale
is-large-suplattice-Π-Large-Locale =
is-large-suplattice-Π-Large-Frame L
set-Π-Large-Locale : (l : Level) → Set (α l ⊔ l1)
set-Π-Large-Locale = set-Π-Large-Frame L
type-Π-Large-Locale : (l : Level) → UU (α l ⊔ l1)
type-Π-Large-Locale = type-Π-Large-Frame L
is-set-type-Π-Large-Locale : {l : Level} → is-set (type-Π-Large-Locale l)
is-set-type-Π-Large-Locale = is-set-type-Π-Large-Frame L
leq-prop-Π-Large-Locale :
Large-Relation-Prop
( λ l2 l3 → β l2 l3 ⊔ l1)
( type-Π-Large-Locale)
leq-prop-Π-Large-Locale = leq-prop-Π-Large-Frame L
leq-Π-Large-Locale :
Large-Relation
( λ l2 l3 → β l2 l3 ⊔ l1)
( type-Π-Large-Locale)
leq-Π-Large-Locale = leq-Π-Large-Frame L
is-prop-leq-Π-Large-Locale :
is-prop-Large-Relation type-Π-Large-Locale leq-Π-Large-Locale
is-prop-leq-Π-Large-Locale = is-prop-leq-Π-Large-Frame L
refl-leq-Π-Large-Locale :
is-reflexive-Large-Relation type-Π-Large-Locale leq-Π-Large-Locale
refl-leq-Π-Large-Locale = refl-leq-Π-Large-Frame L
antisymmetric-leq-Π-Large-Locale :
is-antisymmetric-Large-Relation type-Π-Large-Locale leq-Π-Large-Locale
antisymmetric-leq-Π-Large-Locale = antisymmetric-leq-Π-Large-Frame L
transitive-leq-Π-Large-Locale :
is-transitive-Large-Relation type-Π-Large-Locale leq-Π-Large-Locale
transitive-leq-Π-Large-Locale = transitive-leq-Π-Large-Frame L
meet-Π-Large-Locale :
{l2 l3 : Level} →
type-Π-Large-Locale l2 → type-Π-Large-Locale l3 →
type-Π-Large-Locale (l2 ⊔ l3)
meet-Π-Large-Locale = meet-Π-Large-Frame L
is-greatest-binary-lower-bound-meet-Π-Large-Locale :
{l2 l3 : Level}
(x : type-Π-Large-Locale l2)
(y : type-Π-Large-Locale l3) →
is-greatest-binary-lower-bound-Large-Poset
( large-poset-Π-Large-Locale)
( x)
( y)
( meet-Π-Large-Locale x y)
is-greatest-binary-lower-bound-meet-Π-Large-Locale =
is-greatest-binary-lower-bound-meet-Π-Large-Frame L
top-Π-Large-Locale : type-Π-Large-Locale lzero
top-Π-Large-Locale = top-Π-Large-Frame L
is-top-element-top-Π-Large-Locale :
{l1 : Level} (x : type-Π-Large-Locale l1) →
leq-Π-Large-Locale x top-Π-Large-Locale
is-top-element-top-Π-Large-Locale =
is-top-element-top-Π-Large-Frame L
has-top-element-Π-Large-Locale :
has-top-element-Large-Poset large-poset-Π-Large-Locale
has-top-element-Π-Large-Locale =
has-top-element-Π-Large-Frame L
is-large-meet-semilattice-Π-Large-Locale :
is-large-meet-semilattice-Large-Poset large-poset-Π-Large-Locale
is-large-meet-semilattice-Π-Large-Locale =
is-large-meet-semilattice-Π-Large-Frame L
sup-Π-Large-Locale :
{l2 l3 : Level} {J : UU l2} (x : J → type-Π-Large-Locale l3) →
type-Π-Large-Locale (γ ⊔ l2 ⊔ l3)
sup-Π-Large-Locale = sup-Π-Large-Frame L
is-least-upper-bound-sup-Π-Large-Locale :
{l2 l3 : Level} {J : UU l2} (x : J → type-Π-Large-Locale l3) →
is-least-upper-bound-family-of-elements-Large-Poset
( large-poset-Π-Large-Locale)
( x)
( sup-Π-Large-Locale x)
is-least-upper-bound-sup-Π-Large-Locale =
is-least-upper-bound-sup-Π-Large-Frame L
distributive-meet-sup-Π-Large-Locale :
{l2 l3 l4 : Level}
(x : type-Π-Large-Locale l2)
{J : UU l3} (y : J → type-Π-Large-Locale l4) →
meet-Π-Large-Locale x (sup-Π-Large-Locale y) =
sup-Π-Large-Locale (λ j → meet-Π-Large-Locale x (y j))
distributive-meet-sup-Π-Large-Locale =
distributive-meet-sup-Π-Large-Frame L
```