# Greatest lower bounds in large posets
```agda
module order-theory.greatest-lower-bounds-large-posets where
```
<details><summary>Imports</summary>
```agda
open import foundation.logical-equivalences
open import foundation.universe-levels
open import order-theory.dependent-products-large-posets
open import order-theory.large-posets
open import order-theory.lower-bounds-large-posets
```
</details>
## Idea
A **greatest binary lower bound** of two elements `a` and `b` in a large poset
`P` is an element `x` such that for every element `y` in `P` the logical
equivalence
```text
is-binary-lower-bound-Large-Poset P a b y ↔ y ≤ x
```
holds.
## Definitions
### The predicate that an element of a large poset is the greatest lower bound of two elements
```agda
module _
{α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β)
{l1 l2 : Level} (a : type-Large-Poset P l1) (b : type-Large-Poset P l2)
where
is-greatest-binary-lower-bound-Large-Poset :
{l3 : Level} → type-Large-Poset P l3 → UUω
is-greatest-binary-lower-bound-Large-Poset x =
{l4 : Level} (y : type-Large-Poset P l4) →
is-binary-lower-bound-Large-Poset P a b y ↔ leq-Large-Poset P y x
```
## Properties
### Any pointwise greatest lower bound of two elements in a dependent product of large posets is a greatest lower bound
```agda
module _
{α : Level → Level} {β : Level → Level → Level}
{l : Level} {I : UU l} (P : I → Large-Poset α β)
{l1 l2 l3 : Level}
(x : type-Π-Large-Poset P l1)
(y : type-Π-Large-Poset P l2)
(z : type-Π-Large-Poset P l3)
where
is-greatest-binary-lower-bound-Π-Large-Poset :
( (i : I) →
is-greatest-binary-lower-bound-Large-Poset (P i) (x i) (y i) (z i)) →
is-greatest-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y z
is-greatest-binary-lower-bound-Π-Large-Poset H u =
logical-equivalence-reasoning
is-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y u
↔ ((i : I) → is-binary-lower-bound-Large-Poset (P i) (x i) (y i) (u i))
by
inv-iff
( logical-equivalence-is-binary-lower-bound-Π-Large-Poset P x y u)
↔ leq-Π-Large-Poset P u z
by iff-Π-iff-family (λ i → H i (u i))
```