# Contractible maps
```agda
module foundation.contractible-maps where
open import foundation-core.contractible-maps public
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.logical-equivalences
open import foundation.truncated-maps
open import foundation.universe-levels
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.propositions
open import foundation-core.truncation-levels
```
</details>
## Properties
### Being a contractible map is a property
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
is-prop-is-contr-map : (f : A → B) → is-prop (is-contr-map f)
is-prop-is-contr-map f = is-prop-is-trunc-map neg-two-𝕋 f
is-contr-map-Prop : (A → B) → Prop (l1 ⊔ l2)
pr1 (is-contr-map-Prop f) = is-contr-map f
pr2 (is-contr-map-Prop f) = is-prop-is-contr-map f
```
### Being a contractible map is equivalent to being an equivalence
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where
equiv-is-equiv-is-contr-map : (f : A → B) → is-contr-map f ≃ is-equiv f
equiv-is-equiv-is-contr-map f =
equiv-iff
( is-contr-map-Prop f)
( is-equiv-Prop f)
( is-equiv-is-contr-map)
( is-contr-map-is-equiv)
equiv-is-contr-map-is-equiv : (f : A → B) → is-equiv f ≃ is-contr-map f
equiv-is-contr-map-is-equiv f =
equiv-iff
( is-equiv-Prop f)
( is-contr-map-Prop f)
( is-contr-map-is-equiv)
( is-equiv-is-contr-map)
```
### Contractible maps are closed under homotopies
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : f ~ g)
where
is-contr-map-htpy : is-contr-map g → is-contr-map f
is-contr-map-htpy = is-trunc-map-htpy neg-two-𝕋 H
```
### Contractible maps are closed under composition
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(g : B → X) (h : A → B)
where
is-contr-map-comp : is-contr-map g → is-contr-map h → is-contr-map (g ∘ h)
is-contr-map-comp = is-trunc-map-comp neg-two-𝕋 g h
```
### In a commuting triangle `f ~ g ∘ h`, if `g` and `h` are contractible maps, then `f` is a contractible map
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h))
where
is-contr-map-left-map-triangle :
is-contr-map g → is-contr-map h → is-contr-map f
is-contr-map-left-map-triangle =
is-trunc-map-left-map-triangle neg-two-𝕋 f g h H
```
### In a commuting triangle `f ~ g ∘ h`, if `f` and `g` are contractible maps, then `h` is a contractible map
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h))
where
is-contr-map-top-map-triangle :
is-contr-map g → is-contr-map f → is-contr-map h
is-contr-map-top-map-triangle =
is-trunc-map-top-map-triangle neg-two-𝕋 f g h H
```
### If a composite `g ∘ h` and its left factor `g` are contractible maps, then its right factor `h` is a contractible map
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(g : B → X) (h : A → B)
where
is-contr-map-right-factor :
is-contr-map g → is-contr-map (g ∘ h) → is-contr-map h
is-contr-map-right-factor =
is-trunc-map-right-factor neg-two-𝕋 g h
```
## See also
- For the notion of biinvertible maps see
[`foundation.equivalences`](foundation.equivalences.md).
- For the notion of coherently invertible maps, also known as half-adjoint
equivalences, see
[`foundation.coherently-invertible-maps`](foundation.coherently-invertible-maps.md).
- For the notion of path-split maps see
[`foundation.path-split-maps`](foundation.path-split-maps.md).