# The type theoretic principle of choice
```agda
module foundation.type-theoretic-principle-of-choice where
open import foundation-core.type-theoretic-principle-of-choice public
```
<details><summary>Imports</summary>
```agda
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.implicit-function-types
open import foundation.structure-identity-principle
open import foundation.universe-levels
open import foundation-core.equivalences
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.transport-along-identifications
```
</details>
## Idea
A dependent function taking values in a
[dependent pair type](foundation.dependent-pair-types.md) is
[equivalently](foundation-core.equivalences.md) described as a pair of dependent
functions. This equivalence, which gives the distributivity of Π over Σ, is also
known as the **type theoretic principle of choice**. Indeed, it is the
Curry-Howard interpretation of (one formulation of) the
[axiom of choice](foundation.axiom-of-choice.md).
In this file we record some further facts about the
[structures](foundation.structure.md) introduced in
[`foundation-core.type-theoretic-principle-of-choice`](foundation-core.type-theoretic-principle-of-choice.md).
We relate precomposition of maps into a dependent pair type by a function with
precomposition in dependent pair types of functions in the file
[`orthogonal-factorization-systems.precomposition-lifts-families-of-elements`](orthogonal-factorization-systems.precomposition-lifts-families-of-elements.md).
## Lemma
### Characterizing the identity type of `universally-structured-Π`
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
where
htpy-universally-structured-Π :
(t t' : universally-structured-Π C) → UU (l1 ⊔ l2 ⊔ l3)
htpy-universally-structured-Π t t' =
universally-structured-Π
( λ (x : A) (p : (pr1 t) x = (pr1 t') x) →
tr (C x) p ((pr2 t) x) = (pr2 t') x)
extensionality-universally-structured-Π :
(t t' : universally-structured-Π C) →
(t = t') ≃ htpy-universally-structured-Π t t'
extensionality-universally-structured-Π (f , g) =
extensionality-Σ
( λ {f'} g' (H : f ~ f') → (x : A) → tr (C x) (H x) (g x) = g' x)
( refl-htpy)
( refl-htpy)
( λ f' → equiv-funext)
( λ g' → equiv-funext)
eq-htpy-universally-structured-Π :
{t t' : universally-structured-Π C} →
htpy-universally-structured-Π t t' → t = t'
eq-htpy-universally-structured-Π {t} {t'} =
map-inv-equiv (extensionality-universally-structured-Π t t')
```
### Characterizing the identity type of `universally-structured-implicit-Π`
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
where
htpy-universally-structured-implicit-Π :
(t t' : universally-structured-implicit-Π C) → UU (l1 ⊔ l2 ⊔ l3)
htpy-universally-structured-implicit-Π t t' =
universally-structured-Π
( λ (x : A) (p : (pr1 t) {x} = (pr1 t') {x}) →
tr (C x) p ((pr2 t) {x}) = (pr2 t') {x})
extensionality-universally-structured-implicit-Π :
(t t' : universally-structured-implicit-Π C) →
(t = t') ≃ htpy-universally-structured-implicit-Π t t'
extensionality-universally-structured-implicit-Π (f , g) =
extensionality-Σ
( λ {f'} g' H → (x : A) → tr (C x) (H x) (g {x}) = g' {x})
( refl-htpy)
( refl-htpy)
( λ f' → equiv-funext-implicit)
( λ g' → equiv-funext-implicit)
eq-htpy-universally-structured-implicit-Π :
{t t' : universally-structured-implicit-Π C} →
htpy-universally-structured-implicit-Π t t' → t = t'
eq-htpy-universally-structured-implicit-Π {t} {t'} =
map-inv-equiv (extensionality-universally-structured-implicit-Π t t')
```
## Corollaries
### Characterizing the identity type of `Π-total-fam`
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(f g : (a : A) → Σ (B a) (C a))
where
Eq-Π-total-fam : UU (l1 ⊔ l2 ⊔ l3)
Eq-Π-total-fam =
Π-total-fam (λ x (p : pr1 (f x) = pr1 (g x)) →
tr (C x) p (pr2 (f x)) = pr2 (g x))
extensionality-Π-total-fam : (f = g) ≃ Eq-Π-total-fam
extensionality-Π-total-fam =
( inv-distributive-Π-Σ) ∘e
( extensionality-universally-structured-Π C
( map-distributive-Π-Σ f)
( map-distributive-Π-Σ g)) ∘e
( equiv-ap distributive-Π-Σ f g)
eq-Eq-Π-total-fam : Eq-Π-total-fam → f = g
eq-Eq-Π-total-fam = map-inv-equiv extensionality-Π-total-fam
```
### Characterizing the identity type of `implicit-Π-total-fam`
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(f g : {a : A} → Σ (B a) (C a))
where
extensionality-implicit-Π-total-fam :
(Id {A = {a : A} → Σ (B a) (C a)} f g) ≃
Eq-Π-total-fam C (λ x → f {x}) (λ x → g {x})
extensionality-implicit-Π-total-fam =
( extensionality-Π-total-fam C (λ x → f {x}) (λ x → g {x})) ∘e
( equiv-ap equiv-explicit-implicit-Π f g)
eq-Eq-implicit-Π-total-fam :
Eq-Π-total-fam C (λ x → f {x}) (λ x → g {x}) →
(Id {A = {a : A} → Σ (B a) (C a)} f g)
eq-Eq-implicit-Π-total-fam = map-inv-equiv extensionality-implicit-Π-total-fam
```